Geophysical journal international / Royal astronomical society . vol 180 n° 3Paru le : 01/03/2010 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierThe angular velocities of the plates and the velocity of Earth's centre from space geodesy / Donald F. Argus in Geophysical journal international, vol 180 n° 3 (March 2010)
[article]
Titre : The angular velocities of the plates and the velocity of Earth's centre from space geodesy Type de document : Article/Communication Auteurs : Donald F. Argus, Auteur ; Richard G. Gordon, Auteur ; Michael B. Heflin, Auteur ; Chopo Ma, Auteur ; Richard J. Eanes, Auteur ; Pascal Willis , Auteur ; W. Richard Peltier, Auteur ; Susan E. Owen, Auteur Année de publication : 2010 Article en page(s) : pp 913 - 960 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] géocentre
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] tectonique des plaques
[Termes IGN] vitesse angulaireRésumé : (auteur) Using space geodetic observations from four techniques (GPS, VLBI, SLR and DORIS), we simultaneously estimate the angular velocities of 11 major plates and the velocity of Earth's centre. We call this set of relative plate angular velocities GEODVEL (for GEODesy VELocity).
Plate angular velocities depend on the estimate of the velocity of Earth's centre and on the assignment of sites to plates. Most geodetic estimates of the angular velocities of the plates are determined assuming that Earth's centre is fixed in an International Terrestrial Reference Frame (ITRF), and are therefore subject to errors in the estimate of the velocity of Earth's centre. In ITRF2005 and ITRF2000, Earth's centre is the centre of mass of Earth, oceans and atmosphere (CM); the velocity of CM is estimated by SLR observation of LAGEOS's orbit. Herein we define Earth's centre to be the centre of mass of solid Earth (CE); we determine the velocity of CE by assuming that the portions of plate interiors not near the late Pleistocene ice sheets move laterally as if they were part of a rigid spherical cap. The GEODVEL estimate of the velocity of CE is likely nearer the true velocity of CM than are the ITRF2005 and ITRF2000 estimates because (1) no phenomena can sustain a significant velocity between CM and CE, (2) the plates are indeed nearly rigid (aside from vertical motion) and (3) the velocity of CM differs between ITRF2005 and ITRF2000 by an unacceptably large speed of 1.8 mm yr−1. The velocity of Earth's centre in GEODVEL lies between that of ITRF2000 and that of ITRF2005, with the distance from ITRF2005 being about twice that from ITRF2000. Because the GEODVEL estimates of uncertainties in plate angular velocities account for uncertainty in the velocity of Earth's centre, they are more realistic than prior estimates of uncertainties.
GEODVEL differs significantly from all prior global sets of relative plate angular velocities determined from space geodesy. For example, the 95 per cent confidence limits for the angular velocities of GEODVEL exclude those of REVEL (Sella et al.) for 34 of the 36 plate pairs that can be formed between any two of the nine plates with the best-constrained motion. The median angular velocity vector difference between GEODVEL and REVEL is 0.028° Myr−1, which is up to 3.1 mm yr−1 on Earth's surface. GEODVEL differs the least from the geodetic angular velocities that Altamimi et al. determine from ITRF2005. GEODVEL's 95 per cent confidence limits exclude 11 of 36 angular velocities of Altamimi et al., and the median difference is 0.015° Myr−1.
GEODVEL differs significantly from nearly all relative plate angular velocities averaged over the past few million years, including those of NUVEL-1A. The difference of GEODVEL from updated 3.2 Myr angular velocities is statistically significant for all but two of 36 angular velocities with a median difference of 0.063° Myr−1. Across spreading centres, eight have slowed down while only two have sped up. We conclude that plate angular velocities over the past few decades differ significantly from the corresponding angular velocity averaged over the past 3.2 Myr.Numéro de notice : A2010-656 Affiliation des auteurs : LAREG+Ext (1991-2011) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/j.1365-246X.2009.04463.x Date de publication en ligne : 01/03/2010 En ligne : https://doi.org/10.1111/j.1365-246X.2009.04463.x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91734
in Geophysical journal international > vol 180 n° 3 (March 2010) . - pp 913 - 960[article]Documents numériques
en open access
The angular velocities of the plates ... - pdf éditeurAdobe Acrobat PDF Dynamic mantle density heterogeneities and global geodetic observables / Marianne Greff-Lefftz in Geophysical journal international, vol 180 n° 3 (March 2010)
[article]
Titre : Dynamic mantle density heterogeneities and global geodetic observables Type de document : Article/Communication Auteurs : Marianne Greff-Lefftz, Auteur ; Laurent Métivier , Auteur ; Jean Besse, Auteur Année de publication : 2010 Note générale : bibliographie Langues : Anglais (eng) Résumé : (auteur) We investigate the influence of mantle dynamics on low degree deformations of the Earth at geological timescale. We first compute surface deformations, and discuss the analytical form of the tangential surface displacement induced by internal loads, in a reference frame related to the centre of mass of the planet. We use the theoretical Love numbers formalism since the Earth has a viscoelastic behaviour at geological timescale. Then we quantify degree-one and degree-two deformations induced by upwelling domes and subducted plates sinking into the mantle. We use a simple model in which the slabs are modelled as blobs diving vertically through the mantle, and in which the domes are assumed to be stable over the last 120 Ma. Their location is modelled from seismic tomography within the lower mantle. The temporal evolutions of the J2 gravitational potential coefficient and of the geocentre motion are plotted since 120 Ma. We find that:
(1) The mantle density heterogeneities within the mantle can explain the present-day non-hydrostatic flattening of the Earth. However they vary at a too slow timescale to significantly perturb the graphic coefficient.
(2) Although there is a significant discrepancy of about a few hundred metres between the centre of figure and the centre of mass of the Earth, the secular variation of the geocentre motion is one order of magnitude smaller than the one induced by surface loads.Numéro de notice : A2010-628 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/j.1365-246X.2009.04490.x En ligne : https://doi.org/10.1111/j.1365-246X.2009.04490.x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95911
in Geophysical journal international > vol 180 n° 3 (March 2010)[article]