IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 57 n° 1Paru le : 01/01/2019 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA growth-model-driven technique for tree stem diameter estimation by using airborne LiDAR data / Claudia Paris in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)
[article]
Titre : A growth-model-driven technique for tree stem diameter estimation by using airborne LiDAR data Type de document : Article/Communication Auteurs : Claudia Paris, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2019 Article en page(s) : pp 76 - 92 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Alpes
[Termes IGN] analyse discriminante
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle de croissance végétale
[Termes IGN] Pinophyta
[Termes IGN] régression
[Termes IGN] structure d'un peuplement forestierRésumé : (Auteur) Diameter at breast height (DBH) is one of the most important tree parameter for forest inventory. In this paper, we present a novel method for the adaptive and the accurate DBH estimation of trees characterized by small and large stems. The method automatically discriminates among different tree growth models by means of a data-driven technique based on a clustering procedure. First, the method detects young trees belonging to the lowest forest layer by simply considering the vertical structure of the forest. Then, different clusters of mature trees that are expected to share the same growth-model are identified by analyzing the environmental factors that can affect the stem expansion (e.g., topography and forest density). For each detected growth-model cluster, a tailored regression analysis is performed to obtain accurate DBH estimation results. Experiments have been carried out in an homogeneous coniferous forest located in the Alpine mountainous scenario characterized by a complex topography and a wide range of soil fertility. The method was tested on two data sets characterized by different light detection and ranging (LiDAR) point densities and different forest properties. The results obtained demonstrate the effectiveness of having multiple regression models adapted to the different growth models. Numéro de notice : A2019-103 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2852364 Date de publication en ligne : 07/08/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2852364 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92409
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 1 (January 2019) . - pp 76 - 92[article]Variational learning of mixture wishart model for PolSAR image classification / Qian Wu in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)
[article]
Titre : Variational learning of mixture wishart model for PolSAR image classification Type de document : Article/Communication Auteurs : Qian Wu, Auteur ; Biao Hou, Auteur ; Zaidao Wen, Auteur ; Licheng Jiao, Auteur Année de publication : 2019 Article en page(s) : pp 141 - 154 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification
[Termes IGN] image AIRSAR
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] loi de Wishart
[Termes IGN] optimisation (mathématiques)
[Termes IGN] polarimétrie radarRésumé : (Auteur) The phase difference, amplitude product, and amplitude ratio between two polarizations are important discriminators for terrain classification, which derives a significant statistical-distribution-based polarimetric synthetic aperture radar (PolSAR) image classification. Traditionally, statistical-distribution-based PolSAR image classification models pay attention to two aspects: searching for a suitable distribution to model certain PolSAR image and a satisfactory solution for the corresponding distribution model with samples in every terrain. Usually, the described distribution form is too complicated to build. Besides, inaccurate parameter estimation may lead to poor classification performance for PolSAR image. In order to refrain from this phenomenon, a variational thought is adopted for the statistical-distribution-based PolSAR classification method in this paper. First, a mixture Wishart model is built to model the PolSAR image to replace the complicated distribution for the PolSAR image. Second, a learning-based method is suggested instead of inaccurate point estimation of parameters to determine the distribution for every class in the mixture Wishart model. Finally, the proposed learning-based mixture Wishart model will be built as a variational form to realize a parametric model for PolSAR image classification. In the experiments, it will be proved that the class centers are easier to distinguish among different terrains learned from the proposed variational model. In addition, a classification performance on the PolSAR image is superior to the original point estimation Wishart model on both visual classification result and accuracy. Numéro de notice : A2019-104 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2852633 Date de publication en ligne : 16/08/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2852633 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92410
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 1 (January 2019) . - pp 141 - 154[article]Spectral unmixing with perturbed endmembers / Reza Arablouei in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)
[article]
Titre : Spectral unmixing with perturbed endmembers Type de document : Article/Communication Auteurs : Reza Arablouei, Auteur Année de publication : 2019 Article en page(s) : pp 194 - 211 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] matrice d'information de FischerRésumé : (Auteur) We consider the problem of supervised spectral unmixing with a fully-perturbed linear mixture model where the given endmembers, as well as the observations of the spectral image, are subject to perturbation due to noise, error, or model mismatch. We calculate the Fisher information matrix and the Cramer-Rao lower bound associated with the estimation of the abundance matrix in the considered fully-perturbed linear spectral unmixing problem. We develop an algorithm for estimating the abundance matrix by minimizing a constrained and regularized maximum-log-likelihood objective function using the block coordinate-descend iterations and the alternating direction method of multipliers. We analyze the convergence of the proposed algorithm theoretically and perform simulations with real hyperspectral image data sets to evaluate its performance. The simulation results corroborate the efficacy of the proposed algorithm in mitigating the adverse effects of perturbation in the endmembers. Numéro de notice : A2019-105 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2852745 Date de publication en ligne : 26/07/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2852745 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92411
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 1 (January 2019) . - pp 194 - 211[article]Improving the spatial bias correction algorithm in SMOS image reconstruction processor : validation of soil moisture retrievals with in situ data / Ali Khazaal in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)
[article]
Titre : Improving the spatial bias correction algorithm in SMOS image reconstruction processor : validation of soil moisture retrievals with in situ data Type de document : Article/Communication Auteurs : Ali Khazaal, Auteur ; Philippe Richaume, Auteur ; François Cabot, Auteur ; Eric Anterrieu, Auteur ; Arnaud Mialon, Auteur ; Yann H. Kerr, Auteur Année de publication : 2019 Article en page(s) : pp 277 - 290 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] correction d'image
[Termes IGN] erreur systématique
[Termes IGN] humidité du sol
[Termes IGN] image SMOS
[Termes IGN] résidu
[Termes IGN] télédétection en hyperfréquence
[Termes IGN] température de luminanceRésumé : (Auteur) SMOS is a space mission led by the European Space Agency and designed to provide global maps of Soil Moisture and Ocean salinity, two important geophysical parameters for understanding the water cycle variations and climate change. The SMOS payload is a 2-D interferometer operating at L-band that consists of 69 elementary antennas located along a Y-shaped structure. Important spatial biases persist in the retrieved brightness temperature (BT) images mainly due to the phenomenon of aliasing inside the field of view of SMOS but also due to the Gibbs oscillations near land/ocean transitions. To minimize these biases, a differential image reconstruction algorithm is used in the operational processor that reduces the contrast of the image to be retrieved. To do that, the contribution of a constant artificial temperature map is removed from the measurements prior to reconstruction and then added back after the reconstruction. In this paper, we show that strong residual biases are still present in the retrieved images. To reduce them, we propose to improve the bias correction algorithm by using a more realistic artificial temperature scene based on separating the land and ocean regions and assigning a constant temperature over land and a Fresnel BT model over the ocean. The artificial scene is also improved by means of representing each pixel by its water fraction percentage to smooth the land/ocean transitions. The improved algorithm is validated over the ocean by comparing the retrieved temperatures to a forward geophysical model but also over land by comparing the retrieved soil moisture to in situ measurements. Numéro de notice : A2019-106 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2853619 Date de publication en ligne : 09/08/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2853619 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92412
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 1 (January 2019) . - pp 277 - 290[article]Discriminating ship from radio frequency interference based on noncircularity and non-gaussianity in sentinel-1 SAR imagery / Xiangguang Leng in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)
[article]
Titre : Discriminating ship from radio frequency interference based on noncircularity and non-gaussianity in sentinel-1 SAR imagery Type de document : Article/Communication Auteurs : Xiangguang Leng, Auteur ; Kefeng Ji, Auteur ; Shilin Zhou, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 352 - 363 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] interférence
[Termes IGN] navire
[Termes IGN] radiofréquenceRésumé : (Auteur) Complex information in single-channel synthetic aperture radar (SAR) imagery is seldom used. This is a common practice based on the conventional resolution theory. However, with the advent of high-resolution SAR sensors, information in the complex data has been found to be of significance for ocean applications. In particular, we note that there is a special type of instrumental artifact in Sentinel-1 images. It is rarely researched and may be attributed to radio frequency interference (RFI). It has similar intensity with ships and can degrade ocean interpretation performance severely. This paper proposes an innovative method to discriminate ships from RFIs based on noncircularity and non-Gaussianity. Among them, noncircularity is calculated based on the measure called normalized noncircularity, and non-Gaussianity is estimated based on the complex generalized Gaussian distribution. The discrimination rationale is analyzed in detail. The experimental procedure is based on Sentinel-1 interferometric wide swath products. Only cross-polarization data are tested since RFIs are quite weak in co-polarization data. It is found that noncircularity and non-Gaussianity can characterize and identify the difference between ships and RFIs. Ships present larger noncircularity and sup-Gaussianity while RFIs are found to exhibit quite low noncircularity and mainly show sub-Gaussianity. The proposed method achieves quite good performance. These results show that noncircularity and non-Gaussianity are extremely helpful complements for single-channel SAR imagery interpretation. Numéro de notice : A2019-107 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2854661 Date de publication en ligne : 14/08/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2854661 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92414
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 1 (January 2019) . - pp 352 - 363[article]Toward global soil moisture monitoring with sentinel-1 : harnessing assets and overcoming obstacles / Bernhard Bauer-Marschallinger in IEEE Transactions on geoscience and remote sensing, vol 57 n° 1 (January 2019)
[article]
Titre : Toward global soil moisture monitoring with sentinel-1 : harnessing assets and overcoming obstacles Type de document : Article/Communication Auteurs : Bernhard Bauer-Marschallinger, Auteur ; Vahid Freeman, Auteur ; Senmao Cao, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 520 - 539 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] bilan hydrique
[Termes IGN] humidité du sol
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] Italie
[Termes IGN] Ombrie (Italie)
[Termes IGN] surveillance agricole
[Termes IGN] surveillance météorologiqueRésumé : (Auteur) Soil moisture is a key environmental variable, important to, e.g., farmers, meteorologists, and disaster management units. Here, we present a method to retrieve surface soil moisture (SSM) from the Sentinel-1 (S-1) satellites, which carry C-band Synthetic Aperture Radar (CSAR) sensors that provide the richest freely available SAR data source so far, unprecedented in accuracy and coverage. Our SSM retrieval method, adapting well-established change detection algorithms, builds the first globally deployable soil moisture observation data set with 1-km resolution. This paper provides an algorithm formulation to be operated in data cube architectures and high-performance computing environments. It includes the novel dynamic Gaussian upscaling method for spatial upscaling of SAR imagery, harnessing its field-scale information and successfully mitigating effects from the SAR's high signal complexity. Also, a new regression-based approach for estimating the radar slope is defined, coping with Sentinel-1's inhomogeneity in spatial coverage. We employ the S-1 SSM algorithm on a 3-year S-1 data cube over Italy, obtaining a consistent set of model parameters and product masks, unperturbed by coverage discontinuities. An evaluation of therefrom generated S-1 SSM data, involving a 1-km soil water balance model over Umbria, yields high agreement over plains and agricultural areas, with low agreement over forests and strong topography. While positive biases during the growing season are detected, the excellent capability to capture small-scale soil moisture changes as from rainfall or irrigation is evident. The S-1 SSM is currently in preparation toward operational product dissemination in the Copernicus Global Land Service. Numéro de notice : A2019-108 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2858004 Date de publication en ligne : 22/08/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2858004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92425
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 1 (January 2019) . - pp 520 - 539[article]