IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 57 n° 2Paru le : 01/02/2019 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierGeneration of large-scale moderate-resolution forest height mosaic with spaceborne repeat-pass SAR interferometry and lidar / Yang Lei in IEEE Transactions on geoscience and remote sensing, vol 57 n° 2 (February 2019)
[article]
Titre : Generation of large-scale moderate-resolution forest height mosaic with spaceborne repeat-pass SAR interferometry and lidar Type de document : Article/Communication Auteurs : Yang Lei, Auteur ; Paul Siqueira, Auteur ; Nathan Torbick, Auteur ; Mark J. Ducey, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 770 - 787 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bande L
[Termes IGN] biomasse aérienne
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] hauteur des arbres
[Termes IGN] image ALOS-PALSAR
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Maine (Etats-Unis)
[Termes IGN] New Hampshire (Etats-Unis)Résumé : (Auteur) This paper provides an overview of the scattering model, inversion approach, and validation of the application results for creating large-scale moderate-resolution (hectare-level) mosaics of forest height through using spaceborne repeat-pass SAR interferometry and lidar. By incorporating several improvements to the forest height inversion and mosaicking approach, the height estimation accuracy along with the robustness of this approach have been considerably enhanced from its originally reported accuracy of RMSE of 3-4 m at a 20-hectare aggregated pixel size to RMSE of 3-4 m on the order of 3-6 hectares. Furthermore, practical data processing schemes are provided in detail. Extensive validation results are demonstrated which include: 1) a forest height mosaic (total area of 11.6 million hectares) is generated for the U.S. states of Maine and New Hampshire using Japanese Aerospace Exploration Agency's (JAXA) ALOS-1 InSAR correlation data and a small airborne lidar strip (44 000 hectares); 2) the mosaic height estimates are further compared with the available airborne lidar data and field measurements over both flat and mountainous areas; and 3) feasibility of using modern repeat-pass InSAR satellites with short repeat interval is also examined by using JAXA's ALOS-2 data. This simple and efficient approach is a potential observational prototype with much smaller error budget for the future spaceborne repeat-pass L-band InSAR systems with small spatial baseline and moderate/large temporal baseline (such as NISAR) in combination with lidar (such as GEDI) on the application of large-scale forest height/biomass mapping. It also serves as a complementary tool to the spaceborne single-pass InSAR systems using InSAR/PolInSAR methods when full-pol data are not available and/or when the underlying topography slope causes problems for these approaches. Numéro de notice : A2019-109 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2860590 Date de publication en ligne : 17/08/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2860590 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92427
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 2 (February 2019) . - pp 770 - 787[article]Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery / Lichao Mou in IEEE Transactions on geoscience and remote sensing, vol 57 n° 2 (February 2019)
[article]
Titre : Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery Type de document : Article/Communication Auteurs : Lichao Mou, Auteur ; Lorenzo Bruzzone, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2019 Article en page(s) : pp 924 - 935 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] image multibande
[Termes IGN] réseau neuronal récurrentRésumé : (Auteur) Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network and a recurrent neural network into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependence in bitemporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) it is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; and 3) it is capable of adaptively learning the temporal dependence between multitemporal images, unlike most of the algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analyses of the experimental results demonstrate competitive performance in the proposed mode. Numéro de notice : A2019-110 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2863224 Date de publication en ligne : 20/11/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2863224 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92449
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 2 (February 2019) . - pp 924 - 935[article]A modeling-based approach for soil frost detection in the northern boreal forest region with C-Band SAR / Juval Cohen in IEEE Transactions on geoscience and remote sensing, vol 57 n° 2 (February 2019)
[article]
Titre : A modeling-based approach for soil frost detection in the northern boreal forest region with C-Band SAR Type de document : Article/Communication Auteurs : Juval Cohen, Auteur ; Kimmo Rautinainen, Auteur ; Jaakko Ikonen, Auteur Année de publication : 2019 Article en page(s) : pp 1069 - 1083 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande C
[Termes IGN] Betula (genre)
[Termes IGN] état du sol
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] podzosolRésumé : (Auteur) This paper presents a new approach for monitoring soil frost in the northern boreal forest region using co-polarized C-band synthetic aperture radar (SAR) data. Due to the high sensitivity of the C-band signal to vegetation, estimating the soil freeze/thaw (F/T) state directly from the measured backscatter is not feasible over dense vegetation, such as boreal forests. The presented method is based on applying a simple zeroth-order model to estimate the contribution of the ground and the forest canopy on the observed total backscatter. The retrieved ground and canopy backscatter values were compared with in situ information on soil F/T state. By using a linear least sum of square errors classification algorithm, the retrieved ground and canopy backscatter values representing frozen and thawed ground were successfully separated. The method was tested for various soil types and incidence angles. For soil types with higher water holding capacities and lower infiltration rates such as fine Haplic Podzol and Umbric Gleysol, the estimation accuracy of the F/T state was over 97%, whereas for drier, well-drained soil types such as Haplic Arenosol and Coarse Haplic Podzol it was over 94%. Estimation accuracy slightly increased with higher incidence angle. The method is not feasible in rocky terrain due to very low water content, or in wet snow conditions due to lack of penetration of the C-band SAR signal through wet snow. With low ancillary data and computational requirements, the proposed method is applicable for continuous near real-time monitoring of soil F/T state. Numéro de notice : A2019-111 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2864635 Date de publication en ligne : 17/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2864635 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92450
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 2 (February 2019) . - pp 1069 - 1083[article]A local projection-based approach to individual tree detection and 3-D crown delineation in multistoried coniferous forests using high-density airborne LiDAR data / Aravind Harikumar in IEEE Transactions on geoscience and remote sensing, vol 57 n° 2 (February 2019)
[article]
Titre : A local projection-based approach to individual tree detection and 3-D crown delineation in multistoried coniferous forests using high-density airborne LiDAR data Type de document : Article/Communication Auteurs : Aravind Harikumar, Auteur ; Francesca Bovolo, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2019 Article en page(s) : pp 1168 - 1182 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre dominant
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forêt
[Termes IGN] houppier
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] Pinophyta
[Termes IGN] projection
[Termes IGN] segmentation
[Termes IGN] TrenteRésumé : (Auteur) Accurate crown detection and delineation of dominant and subdominant trees are crucial for accurate inventorying of forests at the individual tree level. The state-of-the-art tree detection and crown delineation methods have good performance mostly with dominant trees, whereas exhibits a reduced accuracy when dealing with subdominant trees. In this paper, we propose a novel approach to accurately detect and delineate both the dominant and subdominant tree crowns in conifer-dominated multistoried forests using small footprint high-density airborne Light Detection and Ranging data. Here, 3-D candidate cloud segments delineated using a canopy height model segmentation technique are projected onto a novel 3-D space where both the dominant and subdominant tree crowns can be accurately detected and delineated. Tree crowns are detected using 2-D features derived from the projected data. The delineation of the crown is performed at the voxel level with the help of both the 2-D features and 3-D texture information derived from the cloud segment. The texture information is modeled by using 3-D Gray Level Co-occurrence Matrix. The performance evaluation was done on a set of six circular plots for which reference data are available. The high detection and delineation accuracies obtained over the state of the art prove the performance of the proposed method. Numéro de notice : A2019-112 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2018.2865014 Date de publication en ligne : 10/09/2018 En ligne : https://doi.org/10.1109/TGRS.2018.2865014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92452
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 2 (February 2019) . - pp 1168 - 1182[article]