ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 149Paru le : 01/03/2019 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2019031 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2019033 | DEP-RECP | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2019032 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierGeometric comparison and quality evaluation of 3D models of indoor environments / H. Tran in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
[article]
Titre : Geometric comparison and quality evaluation of 3D models of indoor environments Type de document : Article/Communication Auteurs : H. Tran, Auteur ; Kourosh Khoshelham, Auteur ; Allison Kealy, Auteur Année de publication : 2019 Article en page(s) : pp 29 - 39 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse comparative
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur géométrique
[Termes IGN] espace intérieur
[Termes IGN] évaluation des données
[Termes IGN] modèle 3D du site
[Termes IGN] positionnement en intérieur
[Termes IGN] qualité des données
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de points
[Termes IGN] test de performanceRésumé : (Auteur) The increasing demand for automated, cost-effective and time-efficient indoor modelling methods leads to a need for performance evaluation of these methods by assessing the quality of the reconstructed models. In this paper, we introduce a method for geometric comparison of a 3D indoor model with a reference, which is useful not only for evaluating the geometric quality of the model, but also for change detection and temporal analysis of the building. The method provides suitable criteria for the quantitative evaluation of the geometric quality in terms of completeness, correctness, and accuracy. Experimental evaluation on a synthetic dataset and the ISPRS benchmark dataset shows the potential of the proposed method for quantitative evaluation and localization of geometric errors in 3D models of indoor environments. Numéro de notice : A2019-126 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.012 Date de publication en ligne : 19/01/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.012 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92436
in ISPRS Journal of photogrammetry and remote sensing > vol 149 (March 2019) . - pp 29 - 39[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A new waveform decomposition method for multispectral LiDAR / Shalei Song in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
[article]
Titre : A new waveform decomposition method for multispectral LiDAR Type de document : Article/Communication Auteurs : Shalei Song, Auteur ; Binhui Wang, Auteur ; Wei Gong, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 40 - 49 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] couvert végétal
[Termes IGN] décomposition de Gauss
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de la végétation
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forme d'onde pleine
[Termes IGN] transformation en ondelettesRésumé : (Auteur) Information derived from waveform decomposition of full-waveform light detection and ranging (LiDAR) data has been widely used in vegetation detection and three-dimensional urban terrain modeling to investigate and interpret the structural diversity of surface coverage. Most prevailing waveform decomposition methods involve only a single wavelength, but these methods do not apply to full-waveform multispectral LiDAR (FWMSL) systems that simultaneously acquire spectral and geometric information. In this paper, we propose a new multispectral waveform decomposition (MSWD) method in order to explore the potential advantages of the FWMSL system. Both simulated data and measured data from our FWMSL system were used to evaluate the performance of the proposed method. The coefficient of determination (R2), root mean square error (RMSE), and relative error (rRMSE) metrics suggest that the decomposition results derived from MSWD exhibit a comparable overall fitting accuracy as a single wavelength waveform decomposition (SWWD) method. We also propose a new evaluation indicator, relative neighbor distance error (RNDE), to represent the relative error in the distance between adjacent targets. The simulation results present clear superiority of MSWD over SWWD in terms of discovering weak or overlapping components and retrieving accurate waveform parameters. The experimental results demonstrated a considerable improvement in RNDE (0.0100–0.0610) over the prevailing SWWD method (0.0566–0.2833). Unlike SWWD, MSWD initializes waveform components using mutually complementary wavelengths thus delivering higher completeness and accuracy. MSWD can be extended to other FWMSL or full-waveform hyperspectral LiDAR systems with additional wavelengths. Numéro de notice : A2019-127 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.014 Date de publication en ligne : 22/01/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.014 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92438
in ISPRS Journal of photogrammetry and remote sensing > vol 149 (March 2019) . - pp 40 - 49[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn / Roberto Interdonato in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
[article]
Titre : DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn Type de document : Article/Communication Auteurs : Roberto Interdonato, Auteur ; Dino Ienco, Auteur ; Raffaele Gaetano, Auteur ; Kenji Ose, Auteur Année de publication : 2019 Article en page(s) : pp 91 - 104 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification dirigée
[Termes IGN] image à haute résolution
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] réseau neuronal convolutif
[Termes IGN] série temporelleRésumé : (Auteur) Nowadays, modern Earth Observation systems continuously generate huge amounts of data. A notable example is represented by the Sentinel-2 mission, which provides images at high spatial resolution (up to 10 m) with high temporal revisit period (every 5 days), which can be organized in Satellite Image Time Series (SITS). While the use of SITS has been proved to be beneficial in the context of Land Use/Land Cover (LULC) map generation, unfortunately, most of machine learning approaches commonly leveraged in remote sensing field fail to take advantage of spatio-temporal dependencies present in such data. Recently, new generation deep learning methods allowed to significantly advance research in this field. These approaches have generally focused on a single type of neural network, i.e., Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), which model different but complementary information: spatial autocorrelation (CNNs) and temporal dependencies (RNNs). In this work, we propose the first deep learning architecture for the analysis of SITS data, namely DuPLO (DUal view Point deep Learning architecture for time series classificatiOn), that combines Convolutional and Recurrent neural networks to exploit their complementarity. Our hypothesis is that, since CNNs and RNNs capture different aspects of the data, a combination of both models would produce a more diverse and complete representation of the information for the underlying land cover classification task. Experiments carried out on two study sites characterized by different land cover characteristics (i.e., the Gard site in Mainland France and Reunion Island, a overseas department of France in the Indian Ocean), demonstrate the significance of our proposal. Numéro de notice : A2019-115 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.011 Date de publication en ligne : 24/01/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92441
in ISPRS Journal of photogrammetry and remote sensing > vol 149 (March 2019) . - pp 91 - 104[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Modelling the effects of fundamental UAV flight parameters on LiDAR point clouds to facilitate objectives-based planning / Jeremy J. Sofonia in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
[article]
Titre : Modelling the effects of fundamental UAV flight parameters on LiDAR point clouds to facilitate objectives-based planning Type de document : Article/Communication Auteurs : Jeremy J. Sofonia, Auteur ; Stuart Phinn, Auteur ; Chris Roelfsema, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 105 - 118 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] balayage laser
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image captée par drone
[Termes IGN] modèle de simulation
[Termes IGN] plan de vol
[Termes IGN] Queensland (Australie)
[Termes IGN] semis de pointsRésumé : (Auteur) Utilised globally across a wide range of applications, the ability to assess and understand LiDAR system capabilities represents an essential component in developing informed decisions on instrument selection and the logistical planning processes associated with site-specific limitations, project objectives and UAV operations. This study employed the new SLAM-based CSIRO “Hovermap” LiDAR system within a purpose-built environment as a testbed to experimentally investigate the interactive effects of fundamental UAV flight parameters on key metrics of LiDAR point clouds. Assessed within a full factorial design at both Site- and Target-levels, the UAV input variables of Pattern, ground Speed and above ground Altitude (AGL) were tested against the point cloud response variables Density, GSD and Accuracy as measured by RMSE and cloud-to-mesh Euclidian distance (‘Deviation’). A novel approach is described wherein the trajectory file of each flight was examined to determine the observed values of the input and response variables, remove noise and facilitate a standardised basis of comparison. Several new terms are introduced including Sampling Effort Variable (SEV, s⋅m−2), Effective Scan Rate (ESR, pts⋅s−1) and Effective Density Rate (EDR, pts⋅m−2⋅s−1) as well as an alternate approach to describe Pattern (s⋅m−1) as a scalar quantity. Reporting significant effects with all response variables at both Site- and Target-levels, the Range of the LiDAR sensor, closely associated with Altitude, presented as the single most important factor. Interestingly, the combination of the independent variables as SEV and EDRpred (‘predicted’ EDR) showed the highest coefficient of determination in the Site-level prediction of Density (AdjR2 = 0.894) and GSD (AdjR2 = 0.978,), respectively, whilst Range best correlated with observed RMSE (AdjR2 = 0.948) and Deviation (AdjR2 = 0.963). Predictive models returned mixed results when evaluated at the Target-level and highlights the need for further investigation to achieve the maximum benefit of high-resolution UAV LiDAR. The results presented here confirm that the CSIRO Hovermap performance is robust and, although variable depending on UAV flight parameters, is predictable and demonstrates the potential value in understanding system performance in harmonised flight planning to achieve project-specific objectives. Numéro de notice : A2019-116 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.020 Date de publication en ligne : 28/01/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92443
in ISPRS Journal of photogrammetry and remote sensing > vol 149 (March 2019) . - pp 105 - 118[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis / Matheus Pinheiro Ferreira in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
[article]
Titre : Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis Type de document : Article/Communication Auteurs : Matheus Pinheiro Ferreira, Auteur ; Fabien Hubert Wagner, Auteur ; Luiz E.O.C. Aragão, Auteur Année de publication : 2019 Article en page(s) : pp 119 - 131 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse texturale
[Termes IGN] arbre (flore)
[Termes IGN] Brésil
[Termes IGN] canopée
[Termes IGN] classification dirigée
[Termes IGN] espèce végétale
[Termes IGN] forêt tropicale
[Termes IGN] houppier
[Termes IGN] image à très haute résolution
[Termes IGN] image infrarouge
[Termes IGN] image Worldview
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] matrice de co-occurrence
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] variation saisonnièreRésumé : (Auteur) Tropical forest conservation and management can significantly benefit from information about the spatial distribution of tree species. Very-high resolution (VHR) spaceborne platforms have been hailed as a promising technology for mapping tree species over broad spatial extents. WorldView-3, the most advanced VHR sensor, provides spectral data in 16 bands covering the visible to near-infrared (VNIR, 400–1040 nm) and shortwave-infrared (SWIR, 1210–2365 nm) wavelength ranges. It also collects images at unprecedented levels of details using a panchromatic band with 0.3-m of spatial resolution. However, the potential of WorldView-3 at its full spectral and spatial resolution for tropical tree species classification remains unknown. In this study, we performed a comprehensive assessment of WorldView-3 images acquired in the dry and wet seasons for tree species discrimination in tropical semi-deciduous forests. Classification experiments were performed using VNIR individually and combined with SWIR channels. To take advantage of the sub-metric resolution of the panchromatic band for classification, we applied an individual tree crown (ITC)-based approach that employed pan-sharpened VNIR bands and gray level co-occurrence matrix texture features. We determined whether the combination of images from the two annual seasons improves the classification accuracy. Finally, we investigated which plant traits influenced species detection. The new SWIR sensing capabilities of WorldView-3 increased the average producer’s accuracy up to 7.8%, by enabling the detection of non-photosynthetic vegetation within ITCs. The combination of VNIR bands from the two annual seasons did not improve the classification results when compared to the results obtained using images from each season individually. The use of VNIR bands at their original 1.2-m spatial resolution yielded average producer’s accuracies of 43.1 ± 3.1% and 38.8 ± 3% in the wet and dry seasons, respectively. The ITC-based approach improved the accuracy to 70 ± 8% in the wet and 68.4 ± 7.4% in the dry season. Texture analysis of the panchromatic band enabled the detection of species-specific differences in crown structure, which improved species detection. The use of texture analysis, pan-sharpening, and ITC delineation is a potential approach to perform tree species classification in tropical forests with WorldView-3 satellite images. Numéro de notice : A2019-117 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.019 Date de publication en ligne : 28/01/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92444
in ISPRS Journal of photogrammetry and remote sensing > vol 149 (March 2019) . - pp 119 - 131[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Radiometric calibration assessments for UAS-borne multispectral cameras: Laboratory and field protocols / Sen Cao in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
[article]
Titre : Radiometric calibration assessments for UAS-borne multispectral cameras: Laboratory and field protocols Type de document : Article/Communication Auteurs : Sen Cao, Auteur ; Brad Danielson, Auteur ; Shari Clare, Auteur Année de publication : 2019 Article en page(s) : pp 132 - 145 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] analyse comparative
[Termes IGN] bande infrarouge
[Termes IGN] bande rouge
[Termes IGN] capteur multibande
[Termes IGN] drone
[Termes IGN] étalonnage radiométrique
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] réflectance spectrale
[Termes IGN] test de performanceRésumé : (Auteur) The main objective of this study was to develop and test a framework that can be used by Unmanned Aerial Systems (UAS) operators with varying technical backgrounds to estimate the accuracy and reliability of multispectral (visible and Near-Infrared or NIR) sensor measurements. We evaluated the performance of two multispectral sensors – the MicaSense RedEdge and the Airinov MultiSpec 4C – in both a laboratory and field setting. In the laboratory, we measured the reflectance of a number of reference target materials using each UAS sensor, and compared the values to those measured using a calibrated spectrometer. We found a strong linear relationship between the measurements made by the MicaSense RedEdge and the spectrometer, while the relationship was much weaker for the Airinov MultiSpec 4C, particularly in the longer wavelength bands (red-edge and NIR). A sub-set of the target materials were selected as ground reference targets for three field calibration exercises. In field calibration assessment No. 1, imagery was collected using each UAS sensor and reflectance values were extracted from pixels covering the ground reference targets. The extracted values were compared to the reflectance values acquired in the laboratory, and both UAS sensors were found to over-estimate reflectance, with lower accuracy in red-edge and NIR bands. Field calibration assessment No. 2 involved a calculation of Normalized Difference Vegetation Index (NDVI) values at field control points using both UAS sensors, and we found a strong linear relationship between the NDVI values and measurements made by a hand-held NDVI sensor, suggesting that the calculation of a normalized band ratio (i.e., NDVI) effectively reduces the reflectance measurement inaccuracy that we observed previously. Field calibration assessment No. 3 included image acquisition of ground reference targets using the MicaSense RedEdge sensor over seventeen sequential field surveys. Results revealed measurement variability over time, suggesting that daily differences in solar illumination and atmospheric conditions may influence derived reflectance values. In light of these results, we propose simplified procedures that can be adopted by UAS operators to periodically assess the radiometric fidelity of their multispectral sensors. Numéro de notice : A2019-226 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.016 Date de publication en ligne : 29/01/2019 En ligne : https://doi.org/ Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92445
in ISPRS Journal of photogrammetry and remote sensing > vol 149 (March 2019) . - pp 132 - 145[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt 3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction / Maximilian Brell in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
[article]
Titre : 3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction Type de document : Article/Communication Auteurs : Maximilian Brell, Auteur ; Karl Segl, Auteur ; Luis Guanter, Auteur ; Bodo Bookhagen, Auteur Année de publication : 2019 Article en page(s) : pp 200 - 214 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] capteur hyperspectral
[Termes IGN] classification orientée objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fusion de données
[Termes IGN] image hyperspectrale
[Termes IGN] impulsion laser
[Termes IGN] niveau de détail
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) Remote Sensing technologies allow to map biophysical, biochemical, and earth surface parameters of the land surface. Of especial interest for various applications in environmental and urban sciences is the combination of spectral and 3D elevation information. However, those two data streams are provided separately by different instruments, namely airborne laser scanner (ALS) for elevation and a hyperspectral imager (HSI) for high spectral resolution data. The fusion of ALS and HSI data can thus lead to a single data entity consistently featuring rich structural and spectral information. In this study, we present the application of fusing the first pulse return information from ALS data at a sub-decimeter spatial resolution with the lower-spatial resolution hyperspectral information available from the HSI into a hyperspectral point cloud (HSPC). During the processing, a plausible hyperspectral spectrum is assigned to every first-return ALS point. We show that the complementary implementation of spectral and 3D information at the point-cloud scale improves object-based classification and information extraction schemes. This improvements have great potential for numerous land-cover mapping and environmental applications. Numéro de notice : A2019-119 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.01.022 Date de publication en ligne : 06/02/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.01.022 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92448
in ISPRS Journal of photogrammetry and remote sensing > vol 149 (March 2019) . - pp 200 - 214[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt