ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 151Paru le : 01/05/2019 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2019051 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2019053 | DEP-RECP | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2019052 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierVirtual Support Vector Machines with self-learning strategy for classification of multispectral remote sensing imagery / Christian Geiss in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Virtual Support Vector Machines with self-learning strategy for classification of multispectral remote sensing imagery Type de document : Article/Communication Auteurs : Christian Geiss, Auteur ; Patrick Aravena Pelizari, Auteur ; Lukas Blickensdörfer, Auteur ; Hannes Taubenböck, Auteur Année de publication : 2019 Article en page(s) : pp 42 - 58 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage automatique
[Termes IGN] classification
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] Cologne
[Termes IGN] échantillon
[Termes IGN] échantillonnage
[Termes IGN] image à très haute résolution
[Termes IGN] image multibande
[Termes IGN] invariant
[Termes IGN] Kenya
[Termes IGN] séparateur à vaste margeRésumé : (Auteur) We follow the idea of learning invariant decision functions for remote sensing image classification with Support Vector Machines (SVM). To do so, we generate artificially transformed samples (i.e., virtual samples) from available prior knowledge. Labeled samples closest to the separating hyperplane with maximum margin (i.e., the Support Vectors) are identified by learning an initial SVM model. The Support Vectors are used for generating virtual samples by perturbing the features to which the model should be invariant. Subsequently, the model is relearned using the Support Vectors and the virtual samples to eventually alter the hyperplane with maximum margin and enhance generalization capabilities of decision functions. In contrast to existing approaches, we establish a self-learning procedure to ultimately prune non-informative virtual samples from a possibly arbitrary invariance generation process to allow for robust and sparse model solutions. The self-learning strategy jointly considers a similarity and margin sampling constraint. In addition, we innovatively explore the invariance generation process in the context of an object-based image analysis framework. Image elements (i.e., pixels) are aggregated to image objects (as represented by segments/superpixels) with a segmentation algorithm. From an initial singular segmentation level, invariances are encoded by varying hyperparameters of the segmentation algorithm in terms of scale and shape. Experimental results are obtained from two very high spatial resolution multispectral data sets acquired over the city of Cologne, Germany, and the Hagadera Refugee Camp, Kenya. Comparative model accuracy evaluations underline the favorable performance properties of the proposed methods especially in settings with very few labeled samples. Numéro de notice : A2019-203 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.001 Date de publication en ligne : 12/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92666
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 42 - 58[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Multi-temporal image change mining based on evidential conflict reasoning / Fatma Haouas in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Multi-temporal image change mining based on evidential conflict reasoning Type de document : Article/Communication Auteurs : Fatma Haouas, Auteur ; Basel Solaiman, Auteur ; Zouhour Ben Dhiaf, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 59 - 75 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] conflit d'intégration
[Termes IGN] détection de changement
[Termes IGN] image Landsat
[Termes IGN] image multitemporelle
[Termes IGN] raisonnement spatial
[Termes IGN] théorie de Dempster-Shafer
[Termes IGN] visibilité spatio-temporelleRésumé : (Auteur) Change detection monitoring on multi-temporal remote sensed images is a persistent methodological challenge where the Dempster-Shafer, or evidence, Theory (DST) has been often applied. This paper presents a new method based on the use of DST for mining bi-temporal remotely sensed images change. The main idea is based on the investigation, analysis and interpretation of different types of conflict between two bi-temporal mass distributions. The reasoning process is focused on the conflict significance and its “partial” causes. In fact, the global conflict that occurs during the joint exploitation of multi-temporal images gives general and non-sufficiently concise information. However, the partial conflict provides rich and important information with regards to the disagreement between knowledge sources. For computing the partial conflict between focal elements, the geometric representation of mass distributions is exploited. The obtained conflict measures, caused by change, are analyzed latter by a new algorithm for drifting binary change map and identifying change directions. The effectiveness and reliability of the proposed approach are shown through experimentations on simulated changed images as well as using multi-temporal Landsat satellite images where qualitative criteria as well as quantitative measures are applied. The performances of the proposed approach, in terms of changed area recognition, are compared to three different and widely used conflict measures: the Empty-set mass, the Jousselme’s distance and the Cosine measure. It is shown that the developed change detection approach outperforms these conflict measures. Numéro de notice : A2019-204 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.02.018 Date de publication en ligne : 13/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.02.018 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92667
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 59 - 75[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Detecting and characterizing downed dead wood using terrestrial laser scanning / Tuomas Yrttimaa in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Detecting and characterizing downed dead wood using terrestrial laser scanning Type de document : Article/Communication Auteurs : Tuomas Yrttimaa, Auteur ; Ninni Saarinen, Auteur ; Ville Luoma, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 76 - 90 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bois mort
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] placette d'échantillonnage
[Termes IGN] qualité des données
[Termes IGN] Ransac (algorithme)
[Termes IGN] rastérisation
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] tronc
[Termes IGN] volume en boisRésumé : (Auteur) Dead wood is a key forest structural component for maintaining biodiversity and storing carbon. Despite its important role in a forest ecosystem, quantifying dead wood alongside standing trees has often neglected when investigating the feasibility of terrestrial laser scanning (TLS) in forest inventories. The objective of this study was therefore to develop an automatic method for detecting and characterizing downed dead wood with a diameter exceeding 5 cm using multi-scan TLS data. The developed four-stage algorithm included (1) RANSAC-cylinder filtering, (2) point cloud rasterization, (3) raster image segmentation, and (4) dead wood trunk positioning. For each detected trunk, geometry-related quality attributes such as dimensions and volume were automatically determined from the point cloud. For method development and validation, reference data were collected from 20 sample plots representing diverse southern boreal forest conditions. Using the developed method, the downed dead wood trunks were detected with an overall completeness of 33% and correctness of 76%. Up to 92% of the downed dead wood volume were detected at plot level with mean value of 68%. We were able to improve the detection accuracy of individual trunks with visual interpretation of the point cloud, in which case the overall completeness was increased to 72% with mean proportion of detected dead wood volume of 83%. Downed dead wood volume was automatically estimated with an RMSE of 15.0 m3/ha (59.3%), which was reduced to 6.4 m3/ha (25.3%) as visual interpretation was utilized to aid the trunk detection. The reliability of TLS-based dead wood mapping was found to increase as the dimensions of dead wood trunks increased. Dense vegetation caused occlusion and reduced the trunk detection accuracy. Therefore, when collecting the data, attention must be paid to the point cloud quality. Nevertheless, the results of this study strengthen the feasibility of TLS-based approaches in mapping biodiversity indicators by demonstrating an improved performance in quantifying ecologically most valuable downed dead wood in diverse forest conditions. Numéro de notice : A2019-205 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.007 Date de publication en ligne : 16/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92668
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 76 - 90[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network / Jianfeng Huang in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network Type de document : Article/Communication Auteurs : Jianfeng Huang, Auteur ; Xinchang Zhang, Auteur ; Qinchuan Xin, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 91 - 105 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] détection du bâti
[Termes IGN] image à haute résolution
[Termes IGN] réseau neuronal convolutif
[Termes IGN] résidu
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] zone urbaineRésumé : (Auteur) Automated extraction of buildings from remotely sensed data is important for a wide range of applications but challenging due to difficulties in extracting semantic features from complex scenes like urban areas. The recently developed fully convolutional neural networks (FCNs) have shown to perform well on urban object extraction because of the outstanding feature learning and end-to-end pixel labeling abilities. The commonly used feature fusion or skip-connection refine modules of FCNs often overlook the problem of feature selection and could reduce the learning efficiency of the networks. In this paper, we develop an end-to-end trainable gated residual refinement network (GRRNet) that fuses high-resolution aerial images and LiDAR point clouds for building extraction. The modified residual learning network is applied as the encoder part of GRRNet to learn multi-level features from the fusion data and a gated feature labeling (GFL) unit is introduced to reduce unnecessary feature transmission and refine classification results. The proposed model - GRRNet is tested in a publicly available dataset with urban and suburban scenes. Comparison results illustrated that GRRNet has competitive building extraction performance in comparison with other approaches. The source code of the developed GRRNet is made publicly available for studies. Numéro de notice : A2019-206 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.02.019 Date de publication en ligne : 20/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.02.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92669
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 91 - 105[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Pairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets / Yusheng Xu in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Pairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets Type de document : Article/Communication Auteurs : Yusheng Xu, Auteur ; Richard Boerner, Auteur ; Wei Yao, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 106 - 123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement d'images
[Termes IGN] congruence
[Termes IGN] données 4D
[Termes IGN] données lidar
[Termes IGN] données spatiotemporelles
[Termes IGN] modèle stéréoscopique
[Termes IGN] octree
[Termes IGN] Ransac (algorithme)
[Termes IGN] scène urbaine
[Termes IGN] semis de points
[Termes IGN] surface plane
[Termes IGN] voxelRésumé : (Auteur) To ensure complete coverage when measuring a large-scale urban area, pairwise registration between point clouds acquired via terrestrial laser scanning or stereo image matching is usually necessary when there is insufficient georeferencing information from additional GNSS and INS sensors. In this paper, we propose a semi-automatic and target-less method for coarse registration of point clouds using geometric constraints of voxel-based 4-plane congruent sets (V4PCS). The planar patches are firstly extracted from voxelized point clouds. Then, the transformation invariant, 4-plane congruent sets are constructed from extracted planar surfaces in each point cloud. Initial transformation parameters between point clouds are estimated via corresponding congruent sets having the highest registration scores in the RANSAC process. Finally, a closed-form solution is performed to achieve optimized transformation parameters by finding all corresponding planar patches using the initial transformation parameters. Experimental results reveal that our proposed method can be effective for registering point clouds acquired from various scenes. A success rate of better than 80% was achieved, with average rotation errors of about 0.5 degrees and average translation errors less than approximately 0.6 m. In addition, our proposed method is more efficient than other baseline methods when using the same hardware and software configuration conditions. Numéro de notice : A2019-207 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.02.015 Date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.02.015 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92673
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 106 - 123[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Fusion of thermal imagery with point clouds for building façade thermal attribute mapping / Dong Lin in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Fusion of thermal imagery with point clouds for building façade thermal attribute mapping Type de document : Article/Communication Auteurs : Dong Lin, Auteur ; Malgorzata Jarząbek-Rychard, Auteur ; Xiaochong Tong, Auteur ; Hans-Gerd Maas, Auteur Année de publication : 2019 Article en page(s) : pp 162 - 175 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] façade
[Termes IGN] image RVB
[Termes IGN] image thermique
[Termes IGN] Ransac (algorithme)
[Termes IGN] semis de points
[Termes IGN] SIFT (algorithme)
[Termes IGN] texturageRésumé : (Auteur) Thermal image data are widely used to assess the insulation quality of buildings and to detect thermal leakages. In our approach, we merge terrestrial thermal image data and 3D point clouds to perform thermal texture mapping for building facades. Since geo-referencing data of a hand-held thermal camera is usually not available in such applications, registration between thermal images and a 3D point cloud (for instance generated from RGB image data by structure-from-motion techniques) is essential. In our approach, thermal image data registration is conducted in four steps: First, another point cloud is generated from the thermal image data. Next, a coarse registration between thermal point cloud and RGB point cloud is performed using the fast global registration (FGR) algorithm. The best corresponding thermal-RGB image pairs are acquired by picking up the lowest Euclidean distance between the exterior orientation parameters of thermal images and transformed exterior orientation parameters of RGB images. Subsequently, radiation-invariant feature transform (RIFT), normalized barycentric coordinate system (NBCS) and random sample consensus (RANSAC) are employed to extract reliable matching features on thermal-RGB image pairs. Afterwards, a fine registration is performed by mono-plotting of the RGB image, followed by image resection of the thermal image. Finally, in terms of texture mapping algorithms, in order to remove the blur effects caused by small misalignments for different candidate images, a global image pose refinement approach, which aims to minimize the temperature disagreements provided by different images for the same object points, is proposed. In addition, in order to ensure high geometric and radiant accuracy, camera calibrations are performed. Experiments showed that the proposed method could not only achieve high geometric registration accuracy, but also provide a good radiometric accuracy with RMSE lower than 1.5 °C. Numéro de notice : A2019-208 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.010 Date de publication en ligne : 21/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.010 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92674
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 162 - 175[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Exploring semantic elements for urban scene recognition: Deep integration of high-resolution imagery and OpenStreetMap (OSM) / Wenzhi Zhao in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Exploring semantic elements for urban scene recognition: Deep integration of high-resolution imagery and OpenStreetMap (OSM) Type de document : Article/Communication Auteurs : Wenzhi Zhao, Auteur ; Yanchen Bo, Auteur ; Jiage Chen, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 237 - 250 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classe sémantique
[Termes IGN] compréhension de l'image
[Termes IGN] fusion de données
[Termes IGN] image à haute résolution
[Termes IGN] reconnaissance d'objets
[Termes IGN] scène urbaineRésumé : (Auteur) Urban scenes refer to city blocks which are basic units of megacities, they play an important role in citizens’ welfare and city management. Remote sensing imagery with largescale coverage and accurate target descriptions, has been regarded as an ideal solution for monitoring the urban environment. However, due to the heterogeneity of remote sensing images, it is difficult to access their geographical content at the object level, let alone understanding urban scenes at the block level. Recently, deep learning-based strategies have been applied to interpret urban scenes with remarkable accuracies. However, the deep neural networks require a substantial number of training samples which are hard to satisfy, especially for high-resolution images. Meanwhile, the crowed-sourced Open Street Map (OSM) data provides rich annotation information about the urban targets but may encounter the problem of insufficient sampling (limited by the places where people can go). As a result, the combination of OSM and remote sensing images for efficient urban scene recognition is urgently needed. In this paper, we present a novel strategy to transfer existing OSM data to high-resolution images for semantic element determination and urban scene understanding. To be specific, the object-based convolutional neural network (OCNN) can be utilized for geographical object detection by feeding it rich semantic elements derived from OSM data. Then, geographical objects are further delineated into their functional labels by integrating points of interest (POIs), which contain rich semantic terms, such as commercial or educational labels. Lastly, the categories of urban scenes are easily acquired from the semantic objects inside. Experimental results indicate that the proposed method has an ability to classify complex urban scenes. The classification accuracies of the Beijing dataset are as high as 91% at the object-level and 88% at the scene level. Additionally, we are probably the first to investigate the object level semantic mapping by incorporating high-resolution images and OSM data of urban areas. Consequently, the method presented is effective in delineating urban scenes that could further boost urban environment monitoring and planning with high-resolution images. Numéro de notice : A2019-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.019 Date de publication en ligne : 29/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92675
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 237 - 250[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Automatic reconstruction of fully volumetric 3D building models from oriented point clouds / Sebastian Ochmann in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Automatic reconstruction of fully volumetric 3D building models from oriented point clouds Type de document : Article/Communication Auteurs : Sebastian Ochmann, Auteur ; Richard Vock, Auteur ; Reinhard Klein, Auteur Année de publication : 2019 Article en page(s) : pp 251 - 262 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] format Industry foudation classes IFC
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] positionnement en intérieur
[Termes IGN] programmation linéaire
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de pointsRésumé : (Auteur) We present a novel method for reconstructing parametric, volumetric, multi-story building models from unstructured, unfiltered indoor point clouds with oriented normals by means of solving an integer linear optimization problem. Our approach overcomes limitations of previous methods in several ways: First, we drop assumptions about the input data such as the availability of separate scans as an initial room segmentation. Instead, a fully automatic room segmentation and outlier removal is performed on the unstructured point clouds. Second, restricting the solution space of our optimization approach to arrangements of volumetric wall entities representing the structure of a building enforces a consistent model of volumetric, interconnected walls fitted to the observed data instead of unconnected, paper-thin surfaces. Third, we formulate the optimization as an integer linear programming problem which allows for an exact solution instead of the approximations achieved with most previous techniques. Lastly, our optimization approach is designed to incorporate hard constraints which were difficult or even impossible to integrate before. We evaluate and demonstrate the capabilities of our proposed approach on a variety of complex real-world point clouds. Numéro de notice : A2019-210 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.017 Date de publication en ligne : 30/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.017 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92676
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 251 - 262[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery / Yanan Liu in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery Type de document : Article/Communication Auteurs : Yanan Liu, Auteur ; Weishu Gong, Auteur ; Yanqiu Xing, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 277 - 289 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] hauteur des arbres
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle numérique de surface
[Termes IGN] polarisationRésumé : (Auteur) Accurate mapping the forest stand mean height (FSMH) and aboveground biomass (AGB) with a high spatial resolution are important for monitoring carbon stocks on Earth and the variability and trends of terrestrial carbon fluxes. The recently launched Sentinel-1 (SAR) and Sentinel-2 (multispectral) missions offers a new opportunity to map FSMH and AGB. Here we present a methodological framework to map the FSMH and AGB at a resolution of 10 m in Yichun, Northeast China, by integrating field plots, Sentinel imagery, topographic data, and national geographical conditions monitoring data. First, a spatial continuous FSMH product was retrieved using an empirical model, which adopts the backscattering of SAR Sentinel-1B and the fraction of vegetation cover (FVC) variable from multispectral Sentinel-2A imagery. Subsequently, three AGB estimation models were developed for different forest types to link the field measurements to the FSMH, biophysical variables, spectral vegetation index, and topographic variables using the random forest algorithm. The mapping results show that the FSMH estimated using SAR backscatter values from VH polarization is more robust and accurate than that based on VV polarization. Furthermore, the three AGB estimation models based on three different forest types perform better than the model built by grouping all forest types together. The determination coefficient (R2) and root-mean-squared error (RMSE) range from 0.69 to 0.74 and 23.38 Mg/ha to 24.21 Mg/ha, respectively. Overall, our study demonstrates that the proposed methodological framework can be used to map the FSMH and AGB products at a high spatial resolution utilizing freely accessible Sentinel-1 SAR and Sentinel-2 multispectral imagery. Numéro de notice : A2019-211 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.016 Date de publication en ligne : 30/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.016 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92677
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 277 - 289[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A new method of equiangular sectorial voxelization of single-scan terrestrial laser scanning data and its applications in forest defoliation estimation / Langning Huo in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : A new method of equiangular sectorial voxelization of single-scan terrestrial laser scanning data and its applications in forest defoliation estimation Type de document : Article/Communication Auteurs : Langning Huo, Auteur ; Xiaoli Zhang, Auteur Année de publication : 2019 Article en page(s) : pp 302 - 312 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] canopée
[Termes IGN] défoliation
[Termes IGN] densité des points
[Termes IGN] régression linéaire
[Termes IGN] télémétrie laser terrestre
[Termes IGN] voxelRésumé : (Auteur) Voxelization is an efficient and frequently used data process that is applied to terrestrial laser scanning (TLS) data to facilitate data management and reduce storage size. In this study, an innovative method of equiangular sectorial voxelization is presented based on the distinctive point distribution characteristic of single-scan TLS. It has the function of containing the same number of laser beams going through each voxel, which results in metrics that can be applied to delineate forest conditions. To verify the effectiveness of the new voxelization method and to illustrate its application, 48 plots and 1098 individual trees with different degrees of defoliation were scanned using single-scan TLS. Their defoliation could be linearly regressed by using only point density metrics derived from this new shape of voxels. A 0.89 R2 value and a 12 RMSE (% of defoliation) were obtained for individual-tree-scale estimation, and a 0.83 R2 value and a 12 RMSE (% of defoliation) were obtained for plot-scale estimation. We conclude that the new voxelization method was effective, and the point density that was thus calculated was an efficient feature that revealed forest attributes. Numéro de notice : A2019-212 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.018 Date de publication en ligne : 30/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.018 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92678
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 302 - 312[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt