[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierDiscrimination and classification of mangrove forests using EO-1 Hyperion data : a case study of Indian Sundarbans / Tanumi Kumar in Geocarto international, vol 34 n° 4 ([15/03/2019])
[article]
Titre : Discrimination and classification of mangrove forests using EO-1 Hyperion data : a case study of Indian Sundarbans Type de document : Article/Communication Auteurs : Tanumi Kumar, Auteur ; Abhishek Mandal, Auteur ; Dibyendu Dutta, Auteur ; R. Nagaraja, Auteur ; Vinay Kumar Dadhwal, Auteur Année de publication : 2019 Article en page(s) : pp 415 - 442 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse discriminante
[Termes IGN] classification barycentrique
[Termes IGN] classification dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification Spectral angle mapper
[Termes IGN] image EO1-Hyperion
[Termes IGN] Inde
[Termes IGN] indice de végétation
[Termes IGN] mangrove
[Termes IGN] palétuvierRésumé : (Auteur) In remote sensing the identification accuracy of mangroves is greatly influenced by terrestrial vegetation. This paper deals with the use of specific vegetation indices for extracting mangrove forests using Earth Observing-1 Hyperion image over a portion of Indian Sundarbans, followed by classification of mangroves into floristic composition classes. Five vegetation indices (three new and two published), namely Mangrove Probability Vegetation Index, Normalized Difference Wetland Vegetation Index, Shortwave Infrared Absorption Index, Normalized Difference Infrared Index and Atmospherically Corrected Vegetation Index were used in decision tree algorithm to develop the mangrove mask. Then, three full-pixel classifiers, namely Minimum Distance, Spectral Angle Mapper and Support Vector Machine (SVM) were evaluated on the data within the mask. SVM performed better than the other two classifiers with an overall precision of 99.08%. The methodology presented here may be applied in different mangrove areas for producing community zonation maps at finer levels. Numéro de notice : A2019-451 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2017.1408699 Date de publication en ligne : 11/12/2017 En ligne : https://doi.org/10.1080/10106049.2017.1408699 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92839
in Geocarto international > vol 34 n° 4 [15/03/2019] . - pp 415 - 442[article]