Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 85 n° 6Paru le : 01/06/2019 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
105-2019061 | SL | Revue | Centre de documentation | Revues en salle | Disponible |
Dépouillements
Ajouter le résultat dans votre panierCNN-based dense image matching for aerial remote sensing images / Shunping Ji in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 6 (June 2019)
[article]
Titre : CNN-based dense image matching for aerial remote sensing images Type de document : Article/Communication Auteurs : Shunping Ji, Auteur ; Jin Liu, Auteur ; Meng Lu, Auteur Année de publication : 2019 Article en page(s) : pp 415 - 424 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] appariement dense
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] couple stéréoscopique
[Termes IGN] image aérienne
[Termes IGN] Munich
[Termes IGN] réseau neuronal convolutif
[Termes IGN] Stuttgart
[Termes IGN] ville
[Termes IGN] zone urbaineRésumé : (Auteur) Dense stereo matching plays a key role in 3D reconstruction. The capability of using deep learning in the stereo matching of remote sensing data is currently uncertain. This article investigated the application of deep learning–based stereo methods in aerial image series and proposed a deep learning–based multi-view dense matching framework. First, we applied three typical convolutional neural network models, MC-CNN, GC-Net, and DispNet, to aerial stereo pairs and compared the results with those of the SGM and a commercial software, SURE. Second, on different data sets, the generalization ability of each network is evaluated by using direct transfer learning with models pretrained on other data sets and by fine-tuning with a small number of target training data. Third, we present a deep learning–based multi-view dense matching framework where the multi-view geometry is introduced to further refine matching results. Three sets of aerial images as the main data sets and two open-source sets of street images as auxiliary data sets are used for testing. Experiments show that, first, the performance of deep learning–based stereo methods is slightly better than traditional methods. Second, both the GC-Net and the MC-CNN have demonstrated good generalization ability and can obtain satisfactory results on aerial images using a pretrained model on several available stereo benchmarks. Third, multi-view geometry constraints can further improve the performance of deep learning–based methods, which is better than that of the multi-view–based SGM and SURE. Numéro de notice : A2019-246 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.6.415 Date de publication en ligne : 01/06/2019 En ligne : https://doi.org/10.14358/PERS.85.6.415 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93002
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 6 (June 2019) . - pp 415 - 424[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019061 SL Revue Centre de documentation Revues en salle Disponible Semantic façade segmentation from airborne oblique images / Yaping Lin in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 6 (June 2019)
[article]
Titre : Semantic façade segmentation from airborne oblique images Type de document : Article/Communication Auteurs : Yaping Lin, Auteur ; Francesco Nex, Auteur ; Michael Ying Yang, Auteur Année de publication : 2019 Article en page(s) : pp 425 - 433 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] façade
[Termes IGN] image aérienne oblique
[Termes IGN] image RVB
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) In this paper, oblique airborne images with very high resolution are used to address the problem from aerial views in urban areas. Traditional classification method (i.e., random forests) is compared with state-of-the-art fully convolutional networks (FCNs). Random forests use hand-craft image features including red, green, blue (RGB), scale-invariant feature transform (SIFT), and Texton, and point cloud features consisting of normal vector and planarity extracted from different scales. In contrast, the inputs of FCNs are the RGB bands and the third components of normal vectors. In both cases, three-dimensional (3D) features are projected back into the image space to support the facade interpretation. Fully connected conditional random field (CRF) is finally taken as a post-processing of the FCN to refine the segmentation results. Several tests have been performed and the achieved results show that the models embedding the 3D component outperform the solution using only images. FCNs significantly outperformed random forests, especially for the balcony delineation. Numéro de notice : A2019-247 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.6.425 Date de publication en ligne : 01/06/2019 En ligne : https://doi.org/10.14358/PERS.85.6.425 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93003
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 6 (June 2019) . - pp 425 - 433[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019061 SL Revue Centre de documentation Revues en salle Disponible RoofN3D: a database for 3D building reconstruction with deep learning / Andreas Wichmann in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 6 (June 2019)
[article]
Titre : RoofN3D: a database for 3D building reconstruction with deep learning Type de document : Article/Communication Auteurs : Andreas Wichmann, Auteur ; Amgad Agoub, Auteur ; Valentina Schmidt, Auteur Année de publication : 2019 Article en page(s) : pp 435 - 443 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] .Net
[Termes IGN] apprentissage profond
[Termes IGN] base de données localisées 3D
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de points
[Termes IGN] toitRésumé : (Auteur) Machine learning methods, in particular those based on deep learning, have gained in importance through the latest development of artificial intelligence and computer hardware. However, the direct application of deep learning methods to improve the results of 3D building reconstruction is often not possible due, for example, to the lack of suitable training data. To address this issue, we present RoofN3D which provides a three-dimensional (3D) point cloud training dataset that can be used to train machine learning models for different tasks in the context of 3D building reconstruction. The details about RoofN3D and the developed framework to automatically derive such training data are described in this paper. Furthermore, we provide an overview of other available 3D point cloud training data and approaches from current literature in which solutions for the application of deep learning to 3D point cloud data are presented. Finally, we exemplarily demonstrate how the provided data can be used to classify building roofs with the PointNet framework. Numéro de notice : A2019-248 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.6.435 En ligne : https://doi.org/10.14358/PERS.85.6.435 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93004
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 6 (June 2019) . - pp 435 - 443[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019061 SL Revue Centre de documentation Revues en salle Disponible