ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 154Paru le : 01/08/2019 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2019081 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2019083 | DEP-RECP | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2019082 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierAutomatic extraction of accurate 3D tie points for trajectory adjustment of mobile laser scanners using aerial imagery / Zille Hussnain in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Automatic extraction of accurate 3D tie points for trajectory adjustment of mobile laser scanners using aerial imagery Type de document : Article/Communication Auteurs : Zille Hussnain, Auteur ; Sander J. Oude Elberink, Auteur ; M. George Vosselman, Auteur ; M. George Vosselman, Auteur Année de publication : 2019 Article en page(s) : pp 41 - 58 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction automatique
[Termes IGN] extraction de points
[Termes IGN] image aérienne
[Termes IGN] points homologues
[Termes IGN] Rotterdam (Pays-Bas)
[Termes IGN] semis de points
[Termes IGN] télémètre laser terrestre
[Termes IGN] télémétrie laser mobileRésumé : (Auteur) Poor GNSS measurements in urban areas caused by blocked GNSS signals and multi-path is a well-known problem, which leads to an inaccurate trajectory estimation of Mobile Laser Scanning (MLS) platforms. Consequently, the MLS point cloud contains positioning errors. This paper presents a new method for the automatic extraction of accurate 3D tie points for the trajectory adjustment of MLS platforms in GNSS denied or troubled areas. The new method relies on aerial imagery as a reliable external source of reference provided that accurate exterior orientation parameters are available. Accordingly, one of the main objectives is to register the mobile laser scanning point cloud with corresponding aerial images. The matches between aerial images are used to obtain 3D tie points by forward intersection. By also determining the corresponding locations in the point cloud we obtain a 3D-3D correspondence between the MLS point cloud and the aerial images. In the future, the obtained 3D-3D correspondences will be used for trajectory adjustment. Our automatic tie point extraction procedure is tested on two independent MLS point clouds. The point clouds were acquired by two different platforms in Rotterdam. The aerial imagery of the same area was acquired at a different time. We evaluated the matching results for both datasets and concluded that the new procedure reliably extracted the 3D tie points for 55% of the tiles of the size of 90 m from the first MLS dataset. In the second dataset, 60% of the tiles of size 74 m yielded reliable 3D tie points. It is not necessary to successfully register all tiles because the results of this work will be used for the trajectory adjustment and the IMU can reliably support the positioning for small intervals. Numéro de notice : A2019-263 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.05.010 Date de publication en ligne : 04/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.05.010 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93076
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 41 - 58[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Explanation for the seam line discontinuity in terrestrial laser scanner point clouds / Derek D. Lichti in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Explanation for the seam line discontinuity in terrestrial laser scanner point clouds Type de document : Article/Communication Auteurs : Derek D. Lichti, Auteur ; Craig L. Glennie, Auteur ; Kaleel Al-Durgham, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 59 - 69 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] angle de visée
[Termes IGN] discontinuité
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestreRésumé : (Auteur) The so-called seam line discontinuity is a phenomenon that can be observed in point clouds captured with some panoramic terrestrial laser scanners. It is an angular discontinuity that is most apparent where the lower limit of the instrument’s angular field-of-view intersects the ground. It appears as step discontinuities at the start (0° horizontal direction) and end (180°) of scanning. To the authors’ best knowledge, its cause and its impact, if any, on point cloud accuracy have not yet been reported. This paper presents the results of a rigorous investigation into several hypothesized causes of this phenomenon: differences between the lower and upper elevation angle scanning limits; the presence of a vertical circle index error; and changes in levelling during scanning. New models for the angular observations have been developed and simulations were performed to independently study the impact of each hypothesized cause and to guide the analyses of real datasets. In order to scrutinize each of the hypothesized causes, experiments were conducted with seven real datasets captured with six different instruments: one hybrid-architecture scanner and five panoramic scanners, one of which was also operated as a hybrid instrument. This study concludes that the difference between the elevation angle scanning limits is the source of the seam line discontinuity phenomenon. Accuracy assessment experiments over real data captured in an indoor test facility demonstrate that the seam line discontinuity has no metric impact on the point clouds. Numéro de notice : A2019-264 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.05.012 Date de publication en ligne : 06/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.05.012 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93078
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 59 - 69[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Improving public data for building segmentation from Convolutional Neural Networks (CNNs) for fused airborne lidar and image data using active contours / David Griffiths in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Improving public data for building segmentation from Convolutional Neural Networks (CNNs) for fused airborne lidar and image data using active contours Type de document : Article/Communication Auteurs : David Griffiths, Auteur ; Jan Böhm , Auteur Année de publication : 2019 Article en page(s) : pp 70 - 83 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage profond
[Termes IGN] bati
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données publiques
[Termes IGN] fusion de données
[Termes IGN] image RVB
[Termes IGN] Royaume-Uni
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] zone ruraleRésumé : (Auteur) Robust and reliable automatic building detection and segmentation from aerial images/point clouds has been a prominent field of research in remote sensing, computer vision and point cloud processing for a number of decades. One of the largest issues associated with deep learning methods is the high quantity of data required for training. To help address this we present a method to improve public GIS building footprint labels by using Morphological Geodesic Active Contours (MorphGACs). We demonstrate by improving the quality of building footprint labels for detection and semantic segmentation, more robust and reliable models can be obtained. We evaluate these methods over a large UK-based dataset of 24556 images containing 169835 building instances. This is achieved by training several Mask/Faster R-CNN and RetinaNet deep convolutional neural networks. Networks are supplied with both RGB and fused RGB-lidar data. We offer quantitative analysis on the benefits of the inclusion of depth data for building segmentation. By employing both methods we achieve a detection accuracy of 0.92 (mAP@0.5) and segmentation f1 scores of 0.94 over a 4911 test images ranging from urban to rural scenes. Numéro de notice : A2019-265 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.05.013 Date de publication en ligne : 06/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.05.013 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93079
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 70 - 83[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Semantic segmentation of road furniture in mobile laser scanning data / Fashuai Li in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Semantic segmentation of road furniture in mobile laser scanning data Type de document : Article/Communication Auteurs : Fashuai Li, Auteur ; Matti Lehtomäki, Auteur ; Sander J. Oude Elberink, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 98 - 113 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification bayesienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] mobilier urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) Road furniture recognition has become a prevalent issue in the past few years because of its great importance in smart cities and autonomous driving. Previous research has especially focussed on pole-like road furniture, such as traffic signs and lamp posts. Published methods have mainly classified road furniture as individual objects. However, most road furniture consists of a combination of classes, such as a traffic sign mounted on a street light pole. To tackle this problem, we propose a framework to interpret road furniture at a more detailed level. Instead of being interpreted as single objects, mobile laser scanning data of road furniture is decomposed in elements individually labelled as poles, and objects attached to them, such as, street lights, traffic signs and traffic lights. In our framework, we first detect road furniture from unorganised mobile laser scanning point clouds. Then detected road furniture is decomposed into poles and attachments (e.g. traffic signs). In the interpretation stage, we extract a set of features to classify the attachments by utilising a knowledge-driven method and four representative types of machine learning classifiers, which are random forest, support vector machine, Gaussian mixture model and naïve Bayes, to explore the optimal method. The designed features are the unary features of attachments and the spatial relations between poles and their attachments. Two experimental test sites in Enschede dataset and Saunalahti dataset were applied, and Saunalahti dataset was collected in two different epochs. In the experimental results, the random forest classifier outperforms the other methods, and the overall accuracy acquired is higher than 80% in Enschede test site and higher than 90% in both Saunalahti epochs. The designed features play an important role in the interpretation of road furniture. The results of two epochs in the same area prove the high reliability of our framework and demonstrate that our method achieves good transferability with an accuracy over 90% through employing the training data of one epoch to test the data in another epoch. Numéro de notice : A2019-266 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.06.001 Date de publication en ligne : 08/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93081
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 98 - 113[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Modelling of buildings from aerial LiDAR point clouds using TINs and label maps / Minglei Li in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Modelling of buildings from aerial LiDAR point clouds using TINs and label maps Type de document : Article/Communication Auteurs : Minglei Li, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2019 Article en page(s) : pp 127 - 138 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] modèle numérique du bâti
[Termes IGN] semis de points
[Termes IGN] toit
[Termes IGN] Triangulated Irregular NetworkRésumé : (Auteur) This paper presents a new framework for automatically creating compact building models from aerial LiDAR point clouds, where each point is known to belong to the class building. The approach addresses the issues of non-uniform point density and outlier detection to extract and refine semantic roof structures by a sequence of operations on a label map. We first partition the points into some coarse regions based on a region growing method over the Triangulated Irregular Network (TIN) model. The region label IDs are then projected to a 2D grid map, which is used to refine the roof regions and their boundaries. We design an energy optimization approach on the label map to optimize the region labels. In order to regularize the contours of roof regions extracted from the label map, we propose a new method for refining contour segment vertices, which iteratively filters the normals of contour segments and uses them to guide the update of contour vertices. The effectiveness of this method is evaluated on LiDAR point clouds from different scenes, and its performance is validated by extensive comparisons to state-of-the-art techniques. Numéro de notice : A2019-267 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.06.003 Date de publication en ligne : 11/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.003 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93082
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 127 - 138[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network / Chunping Qiu in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network Type de document : Article/Communication Auteurs : Chunping Qiu, Auteur ; Lichao Mou, Auteur ; Michael Schmitt, Auteur ; Xiao Xiang Zhu, Auteur Année de publication : 2019 Article en page(s) : pp 151 - 162 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] climat urbain
[Termes IGN] image multitemporelle
[Termes IGN] image optique
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal récurrent
[Termes IGN] résidu
[Termes IGN] villeRésumé : (Auteur) The local climate zone (LCZ) scheme was originally proposed to provide an interdisciplinary taxonomy for urban heat island (UHI) studies. In recent years, the scheme has also become a starting point for the development of higher-level products, as the LCZ classes can help provide a generalized understanding of urban structures and land uses. LCZ mapping can therefore theoretically aid in fostering a better understanding of spatio-temporal dynamics of cities on a global scale. However, reliable LCZ maps are not yet available globally. As a first step toward automatic LCZ mapping, this work focuses on LCZ-derived land cover classification, using multi-seasonal Sentinel-2 images. We propose a recurrent residual network (Re-ResNet) architecture that is capable of learning a joint spectral-spatial-temporal feature representation within a unitized framework. To this end, a residual convolutional neural network (ResNet) and a recurrent neural network (RNN) are combined into one end-to-end architecture. The ResNet is able to learn rich spectral-spatial feature representations from single-seasonal imagery, while the RNN can effectively analyze temporal dependencies of multi-seasonal imagery. Cross validations were carried out on a diverse dataset covering seven distinct European cities, and a quantitative analysis of the experimental results revealed that the combined use of the multi-temporal information and Re-ResNet results in an improvement of approximately 7 percent points in overall accuracy. The proposed framework has the potential to produce consistent-quality urban land cover and LCZ maps on a large scale, to support scientific progress in fields such as urban geography and urban climatology. Numéro de notice : A2019-268 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.05.004 Date de publication en ligne : 14/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.05.004 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93085
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 151 - 162[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images / Jie Wang in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images Type de document : Article/Communication Auteurs : Jie Wang, Auteur ; Xiangming Xiao, Auteur ; Rajen Bajgain, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 189 - 201 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] Leaf Area Index
[Termes IGN] Oklahoma (Etats-Unis)
[Termes IGN] paturage
[Termes IGN] phénologie
[Termes IGN] régression multipleRésumé : (Auteur) Grassland degradation has accelerated in recent decades in response to increased climate variability and human activity. Rangeland and grassland conditions directly affect forage quality, livestock production, and regional grassland resources. In this study, we examined the potential of integrating synthetic aperture radar (SAR, Sentinel-1) and optical remote sensing (Landsat-8 and Sentinel-2) data to monitor the conditions of a native pasture and an introduced pasture in Oklahoma, USA. Leaf area index (LAI) and aboveground biomass (AGB) were used as indicators of pasture conditions under varying climate and human activities. We estimated the seasonal dynamics of LAI and AGB using Sentinel-1 (S1), Landsat-8 (LC8), and Sentinel-2 (S2) data, both individually and integrally, applying three widely used algorithms: Multiple Linear Regression (MLR), Support Vector Machine (SVM), and Random Forest (RF). Results indicated that integration of LC8 and S2 data provided sufficient data to capture the seasonal dynamics of grasslands at a 10–30-m spatial resolution and improved assessments of critical phenology stages in both pluvial and dry years. The satellite-based LAI and AGB models developed from ground measurements in 2015 reasonably predicted the seasonal dynamics and spatial heterogeneity of LAI and AGB in 2016. By comparison, the integration of S1, LC8, and S2 has the potential to improve the estimation of LAI and AGB more than 30% relative to the performance of S1 at low vegetation cover (LAI 2 m2/m2, AGB > 500 g/m2). These results demonstrate the potential of combining S1, LC8, and S2 monitoring grazing tallgrass prairie to provide timely and accurate data for grassland management. Numéro de notice : A2019-269 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.06.007 Date de publication en ligne : 21/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93086
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 189 - 201[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2 / Ali Mokhtari in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2 Type de document : Article/Communication Auteurs : Ali Mokhtari, Auteur ; Hamideh Noory, Auteur ; Farrokh Pourshakouri, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 231 - 245 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bilan énergétique
[Termes IGN] blé (céréale)
[Termes IGN] cultures
[Termes IGN] évapotranspiration
[Termes IGN] fusion d'images
[Termes IGN] fusion de données
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] orge (céréale)
[Termes IGN] TéhéranRésumé : (Auteur) Evapotranspiration is considered to be an important component of allocating water to agricultural sector; therefore, the more accurate this parameter is, the more optimized the water use can be. This study was conducted in order to evaluate the Landsat 8 and Sentinel-2 data (A and B), both separately and combined, in potential evapotranspiration (ETp) and single crop coefficient (Kc) estimations. Field measurements such as crop height, leaf area index (LAI), land surface temperature (LST), air temperature above canopy (AT), and spectral data were exploited in the evaluating process throughout the entirety of 2017–18 growing season under winter wheat and barley cultivations in the Agricultural Research Farms of the University of Tehran. The novel method of Multi-Sensor Data Fusion using the Priestly-Taylor equation was taken into practice for satellite-based ETp (MSDF-ET) calculation from the combination of MODIS thermal and Landsat 8 and Sentinel-2 multispectral data. Thermal images were downscaled by the means of the TsHARP algorithm. Thus, prior to ETp calculation, the thermal sharpening algorithm calculated using different spectral indices (SI) was assessed. The SI included NDVI, SAVI, SR, NDWI, NDWIg, and LSWI. The subsequent results were representative of the LSWI qualification under both Landsat 8 and Sentinel-2 conditions against thermal and spectral measurements. Also the satellite-based ETp strongly correlated with the ETp derived from the field data illuminating the promising accuracy of the MSDF-ET method in both Landsat 8 and Sentinel-2 data. In the end, the time series of Kc obtained from the combination of satellites were fairly indicative of the real-world variations under different vegetation cover and crop growth stages. Overall, using Landsat 8 and Sentinel-2 products in integration with each other could significantly result in more reliable decisions in agricultural water resources management. Numéro de notice : A2019-270 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.06.011 Date de publication en ligne : 24/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93088
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 231 - 245[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Pyramid scene parsing network in 3D: Improving semantic segmentation of point clouds with multi-scale contextual information / Hao Fang in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Pyramid scene parsing network in 3D: Improving semantic segmentation of point clouds with multi-scale contextual information Type de document : Article/Communication Auteurs : Hao Fang, Auteur ; Florent Lafarge, Auteur Année de publication : 2019 Article en page(s) : pp 246 - 258 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] compréhension de l'image
[Termes IGN] données localisées 3D
[Termes IGN] prise en compte du contexte
[Termes IGN] représentation multiple
[Termes IGN] scène
[Termes IGN] scène intérieure
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) Analyzing and extracting geometric features from 3D data is a fundamental step in 3D scene understanding. Recent works demonstrated that deep learning architectures can operate directly on raw point clouds, i.e. without the use of intermediate grid-like structures. These architectures are however not designed to encode contextual information in-between objects efficiently. Inspired by a global feature aggregation algorithm designed for images (Zhao et al., 2017), we propose a 3D pyramid module to enrich pointwise features with multi-scale contextual information. Our module can be easily coupled with 3D semantic segmentation methods operating on 3D point clouds. We evaluated our method on three large scale datasets with four baseline models. Experimental results show that the use of enriched features brings significant improvements to the semantic segmentation of indoor and outdoor scenes. Numéro de notice : A2019-271 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.06.010 Date de publication en ligne : 01/07/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.010 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93089
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 246 - 258[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt