[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierClassification of glacial lakes using integrated approach of DFPS technique and gradient analysis using Sentinel 2A data / Prateek Verma in Geocarto international, vol 34 n° 10 ([15/07/2019])
[article]
Titre : Classification of glacial lakes using integrated approach of DFPS technique and gradient analysis using Sentinel 2A data Type de document : Article/Communication Auteurs : Prateek Verma, Auteur ; Sanjay Kumar Ghosh, Auteur Année de publication : 2019 Article en page(s) : pp 1075 - 1088 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] changement climatique
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] image Sentinel-MSI
[Termes IGN] lac glaciaire
[Termes IGN] Normalized Difference Water Index
[Termes IGN] seuillage d'image
[Termes IGN] Uttarakhand (Inde ; état)Résumé : (auteur) It is important to identify and locate glacial lakes for assessing any potential hazard. This study presents a combination of semi-automatic method Double-Window Flexible Pace Search (DFPS) and edge detection technique to identify glacial lakes using Sentinel 2A satellite data. Initially, Normalized Difference Water Index (NDWI) has been used to identify water and non-water areas, while DFPS and Edge detection technique has been used to identify an optimum threshold value to distinguish between water and shadow areas. The optimal threshold from DFPS process is 0.21, while threshold value of gradient magnitude using edge detection process is 0.318. The number of glacial lakes identified using the above algorithm is in close agreement with previously published results on glacial lakes in Gangotri glacier using different techniques. Thus, a combination of DFPS and edge detection process has successfully segregated glacial lakes from other features present in Gangotri glacier. Numéro de notice : A2019-300 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1469677 Date de publication en ligne : 15/05/2018 En ligne : https://doi.org/10.1080/10106049.2018.1469677 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93220
in Geocarto international > vol 34 n° 10 [15/07/2019] . - pp 1075 - 1088[article]Evaluating the potential of the red edge channel for C3 (Festuca spp.) grass discrimination using Sentinel-2 and Rapid Eye satellite image data / Charles Otunga in Geocarto international, vol 34 n° 10 ([15/07/2019])
[article]
Titre : Evaluating the potential of the red edge channel for C3 (Festuca spp.) grass discrimination using Sentinel-2 and Rapid Eye satellite image data Type de document : Article/Communication Auteurs : Charles Otunga, Auteur ; John Odindi, Auteur ; Onisimo Mutanga, Auteur ; Clément Adjorlolo, Auteur Année de publication : 2019 Article en page(s) : pp 1123 - 1143 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Afrique du sud (état)
[Termes IGN] analyse discriminante
[Termes IGN] bande rouge
[Termes IGN] bande spectrale
[Termes IGN] carte de la végétation
[Termes IGN] Festuca (genre)
[Termes IGN] image RapidEye
[Termes IGN] image Sentinel-MSI
[Termes IGN] paturage
[Termes IGN] prairie
[Termes IGN] répartition géographiqueRésumé : (auteur) Integrating the Red Edge channel in satellite sensors is valuable for plant species discrimination. Sentinel-2 MSI and Rapid Eye are some of the new generation satellite sensors that are characterized by finer spatial and spectral resolution, including the red edge band. The aim of this study was to evaluate the potential of the red edge band of Sentinel-2 and Rapid Eye, for mapping festuca C3 grass using discriminant analysis and maximum likelihood classification algorithms. Spectral bands, vegetation indices and spectral bands plus vegetation indices were analysed. Results show that the integration of the red edge band improved the festuca C3 grass mapping accuracy by 5.95 and 4.76% for Sentinel-2 and Rapid Eye when the red edge bands were included and excluded in the analysis, respectively. The results demonstrate that the use of sensors with strategically positioned red edge bands, could offer information that is critical for the sustainable rangeland management. Numéro de notice : A2019-301 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1474274 Date de publication en ligne : 24/05/2018 En ligne : https://doi.org/10.1080/10106049.2018.1474274 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93221
in Geocarto international > vol 34 n° 10 [15/07/2019] . - pp 1123 - 1143[article]Combining spatiotemporal fusion and object-based image analysis for improving wetland mapping in complex and heterogeneous urban landscapes / Meng Zhang in Geocarto international, vol 34 n° 10 ([15/07/2019])
[article]
Titre : Combining spatiotemporal fusion and object-based image analysis for improving wetland mapping in complex and heterogeneous urban landscapes Type de document : Article/Communication Auteurs : Meng Zhang, Auteur ; Yongnian Zeng, Auteur ; Wei Huang, Auteur ; Songnian Li, Auteur Année de publication : 2019 Article en page(s) : pp 1144 - 1161 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] Chine
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion d'images
[Termes IGN] hétérogénéité
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] paysage urbain
[Termes IGN] zone humideRésumé : (auteur) Remote sensing has been proven promising in wetland mapping. However, conventional methods in a complex and heterogeneous urban landscape usually use mono temporal Landsat TM/ETM + images, which have great uncertainty due to the spectral similarity of different land covers, and pixel-based classifications may not meet the accuracy requirement. This paper proposes an approach that combines spatiotemporal fusion and object-based image analysis, using the spatial and temporal adaptive reflectance fusion model to generate a time series of Landsat 8 OLI images on critical dates of sedge swamp and paddy rice, and the time series of MODIS NDVI to calculate phenological parameters for identifying wetlands with an object-based method. The results of a case study indicate that different types of wetlands can be successfully identified, with 92.38%. The overall accuracy and 0.85 Kappa coefficient, and 85% and 90% for the user’s accuracies of sedge swamp and paddy respectively. Numéro de notice : A2019-302 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1474275 Date de publication en ligne : 17/05/2018 En ligne : https://doi.org/10.1080/10106049.2018.1474275 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93222
in Geocarto international > vol 34 n° 10 [15/07/2019] . - pp 1144 - 1161[article]