IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 57 n° 9Paru le : 01/09/2019 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierThe Parallel SBAS approach for Sentinel-1 interferometric wide swath deformation time-series generation: algorithm description and products quality assessment / Michele Manunta in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)
[article]
Titre : The Parallel SBAS approach for Sentinel-1 interferometric wide swath deformation time-series generation: algorithm description and products quality assessment Type de document : Article/Communication Auteurs : Michele Manunta, Auteur ; Claudio De Luca, Auteur ; Ivana Zinno, Auteur ; Francesco Casu, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 6259 - 6281 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] chaîne de traitement
[Termes IGN] données GPS
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] interferométrie différentielle
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Italie
[Termes IGN] qualité du processus
[Termes IGN] série temporelleRésumé : (auteur) We present an advanced differential synthetic aperture radar (SAR) interferometry (DInSAR) processing chain, based on the Parallel Small BAseline Subset (P-SBAS) technique, for the efficient generation of deformation time series from Sentinel-1 (S-1) interferometric wide (IW) swath SAR data sets. We first discuss an effective solution for the generation of high-quality interferograms, which properly accounts for the peculiarities of the terrain observation with progressive scans (TOPS) acquisition mode used to collect S-1 IW SAR data. These data characteristics are also properly accounted within the developed processing chain, taking full advantage from the burst partitioning. Indeed, such data structure represents a key element in the proposed P-SBAS implementation of the S-1 IW processing chain, whose migration into a cloud computing (CC) environment is also envisaged. An extensive experimental analysis, which allows us to assess the quality of the obtained interferometric products, is presented. To do this, we apply the developed S-1 IW P-SBAS processing chain to the overall archive acquired from descending orbits during the March 2015–April 2017 time span over the whole Italian territory, consisting in 2740 S-1 slices. In particular, the quality of the final results is assessed through a large-scale comparison with the GPS measurements relevant to nearly 500 stations. The mean standard deviation value of the differences between the DInSAR and the GPS time series (projected in the radar line of sight) is less than 0.5 cm, thus confirming the effectiveness of the implemented solution. Finally, a discussion about the performance achieved by migrating the developed processing chain within the Amazon Web Services CC environment is addressed, highlighting that a two-year data set relevant to a standard S-1 IW slice can be reliably processed in about 30 h. The presented results demonstrate the capability of the implemented P-SBAS approach to efficiently and effectively process large S-1 IW data sets relevant to extended portions of the earth surface, paving the way to the systematic generation of advanced DInSAR products to monitor ground displacements at a very wide spatial scale. Numéro de notice : A2019-624 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2904912 Date de publication en ligne : 24/05/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2904912 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93374
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 9 (September 2019) . - pp 6259 - 6281[article]Sentinel-2 sharpening using a reduced-rank method / Magnus Orn Ulfarsson in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)
[article]
Titre : Sentinel-2 sharpening using a reduced-rank method Type de document : Article/Communication Auteurs : Magnus Orn Ulfarsson, Auteur ; Frosti Palsson, Auteur ; Mauro Dalla Mura, Auteur ; Johannes R. Sveinsson, Auteur Année de publication : 2019 Article en page(s) : pp 6408 - 6420 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] affinage d'image
[Termes IGN] ajustement de paramètres
[Termes IGN] estimation bayesienne
[Termes IGN] fusion de données
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] largeur de bandeRésumé : (auteur) Recently, the Sentinel-2 (S2) satellite constellation was deployed for mapping and monitoring the Earth environment. Images acquired by the sensors mounted on the S2 platforms have three levels of spatial resolution: 10, 20, and 60 m. In many remote sensing applications, the availability of images at the highest spatial resolution (i.e., 10 m for S2) is often desirable. This can be achieved by generating a synthetic high-resolution image through data fusion. To this end, researchers have proposed techniques exploiting the spectral/spatial correlation inherent in multispectral data to sharpen the lower resolution S2 bands to 10 m. In this paper, we propose a novel method that formulates the sharpening process as a solution to an inverse problem. We develop a cyclic descent algorithm called S2Sharp and an associated tuning parameter selection algorithm based on generalized cross validation and Bayesian optimization. The tuning parameter selection method is evaluated on a simulated data set. The effectiveness of S2Sharp is assessed experimentally by comparisons to state-of-the-art methods using both simulated and real data sets. Numéro de notice : A2019-340 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2906048 Date de publication en ligne : 22/04/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2906048 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93377
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 9 (September 2019) . - pp 6408 - 6420[article]An analytic expression for the phase noise of the goldstein–werner filter / Scott Hensley in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)
[article]
Titre : An analytic expression for the phase noise of the goldstein–werner filter Type de document : Article/Communication Auteurs : Scott Hensley, Auteur Année de publication : 2019 Article en page(s) : pp 6499 - 6516 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bruit thermique
[Termes IGN] corrélation temporelle
[Termes IGN] densité spectrale de puissance
[Termes IGN] filtrage du bruit
[Termes IGN] filtre de Goldstein
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] phase
[Termes IGN] pouvoir de résolution spectrale
[Termes IGN] rapport signal sur bruit
[Termes IGN] transformation de FourierRésumé : (auteur) Interferogram filtering for noise reduction is a key to many radar interferometric applications. Repeat pass radar interferometry often uses data with less than ideal correlation levels resulting from either long spatial or temporal baselines or changes between observations leading to high levels of temporal correlation. To maximize the utility of such pairs filtering the interferogram to get maximal noise reduction is often needed. One technique that has proved quite useful in the geophysical community is power spectral or Goldstein–Werner filtering of the interferogram whereby a power-weighted version of the Fourier transform is used to enhance fringe visibility. Although this paper defining the filter briefly touched upon the spatial resolution and noise reduction induced by the filter, it did not provide a useful formula for predicting the phase noise after filtering. This paper derives a formula for the phase noise obtained from power spectral filtering albeit under the restriction of several simplifying assumptions to make the problem analytically tractable. In particular, it is assumed that the interferometric phase is locally well approximated by a linear phase ramp with nonlinear phase perturbations small in a spectral energy sense compared to the linear term. Numéro de notice : A2019-343 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2906549 Date de publication en ligne : 25/04/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2906549 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93378
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 9 (September 2019) . - pp 6499 - 6516[article]Learning and adapting robust features for satellite image segmentation on heterogeneous data sets / Sina Ghassemi in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)
[article]
Titre : Learning and adapting robust features for satellite image segmentation on heterogeneous data sets Type de document : Article/Communication Auteurs : Sina Ghassemi, Auteur ; Attilio Friandrotti, Auteur ; Gianluca Francini, Auteur ; Enrico Magli, Auteur Année de publication : 2019 Article en page(s) : pp 6517 - 6529 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] coût
[Termes IGN] données hétérogènes
[Termes IGN] image binaire
[Termes IGN] image satellite
[Termes IGN] méthode robuste
[Termes IGN] réseau neuronal convolutif
[Termes IGN] segmentation binaire
[Termes IGN] segmentation d'image
[Termes IGN] test de performanceRésumé : (auteur) This paper addresses the problem of training a deep neural network for satellite image segmentation so that it can be deployed over images whose statistics differ from those used for training. For example, in postdisaster damage assessment, the tight time constraints make it impractical to train a network from scratch for each image to be segmented. We propose a convolutional encoder–decoder network able to learn visual representations of increasing semantic level as its depth increases, allowing it to generalize over a wider range of satellite images. Then, we propose two additional methods to improve the network performance over each specific image to be segmented. First, we observe that updating the batch normalization layers’ statistics over the target image improves the network performance without human intervention. Second, we show that refining a trained network over a few samples of the image boosts the network performance with minimal human intervention. We evaluate our architecture over three data sets of satellite images, showing the state-of-the-art performance in binary segmentation of previously unseen images and competitive performance with respect to more complex techniques in a multiclass segmentation task. Numéro de notice : A2019-341 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2906689 Date de publication en ligne : 17/04/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2906689 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93379
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 9 (September 2019) . - pp 6517 - 6529[article]