Silva fennica / Finnish society of forest science (Finlande) . vol 53 n° 3Paru le : 01/10/2019 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierTransferability and calibration of airborne laser scanning based mixed-effects models to estimate the attributes of sawlog-sized Scots pines / Lauri Korhonen in Silva fennica, vol 53 n° 3 (2019)
[article]
Titre : Transferability and calibration of airborne laser scanning based mixed-effects models to estimate the attributes of sawlog-sized Scots pines Type de document : Article/Communication Auteurs : Lauri Korhonen, Auteur ; Jaakko Repola, Auteur ; Tomi Karjalainen, Auteur ; Petteri Packalen, Auteur ; Matti Maltamo, Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] erreur systématique
[Termes IGN] estimation statistique
[Termes IGN] étalonnage de modèle
[Termes IGN] hauteur à la base du houppier
[Termes IGN] houppier
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lasergrammétrie
[Termes IGN] Pinus sylvestris
[Termes IGN] placette d'échantillonnage
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Airborne laser scanning (ALS) data is nowadays often available for forest inventory purposes, but adequate field data for constructing new forest attribute models for each area may be lacking. Thus there is a need to study the transferability of existing ALS-based models among different inventory areas. The objective of our study was to apply ALS-based mixed models to estimate the diameter, height and crown base height of individual sawlog sized Scots pines (Pinus sylvestrisL.) at three different inventory sites in eastern Finland. Different ALS sensors and acquisition parameters were used at each site. Multivariate mixed-effects models were fitted at one site and the models were validated at two independent test sites. Validation was carried out by applying the fixed parts of the mixed models as such, and by calibrating them using 1–3 sample trees per plot. The results showed that the relative RMSEs of the predictions were 1.2–6.5 percent points larger at the test sites compared to the training site. Systematic errors of 2.4–6.2 percent points also emerged at the test sites. However, both the RMSEs and the systematic errors decreased with calibration. The results showed that mixed-effects models of individual tree attributes can be successfully transferred and calibrated to other ALS inventory areas in a level of accuracy that appears suitable for practical applications. Numéro de notice : A2019-641 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10179 Date de publication en ligne : 31/07/2019 En ligne : https://doi.org/10.14214/sf.10179 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93446
in Silva fennica > vol 53 n° 3 (2019)[article]