Journal of geodetic science . vol 9 n° 1Paru le : 01/01/2019 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierGeodesic equations and their numerical solution in Cartesian coordinates on a triaxial ellipsoid / Georgios Panou in Journal of geodetic science, vol 9 n° 1 (January 2019)
[article]
Titre : Geodesic equations and their numerical solution in Cartesian coordinates on a triaxial ellipsoid Type de document : Article/Communication Auteurs : Georgios Panou, Auteur ; Romylos Korakitis, Auteur Année de publication : 2019 Article en page(s) : pp 1 - 12 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie
[Termes IGN] constante
[Termes IGN] coordonnées cartésiennes géocentriques
[Termes IGN] coordonnées ellipsoïdales
[Termes IGN] problème des valeurs limites
[Termes IGN] transformation de coordonnéesRésumé : (auteur) In this work, the geodesic equations and their numerical solution in Cartesian coordinates on an oblate spheroid, presented by Panou and Korakitis (2017), are generalized on a triaxial ellipsoid. A new exact analytical method and a new numerical method of converting Cartesian to ellipsoidal coordinates of a point on a triaxial ellipsoid are presented. An extensive test set for the coordinate conversion is used, in order to evaluate the performance of the two methods. The direct geodesic problem on a triaxial ellipsoid is described as an initial value problem and is solved numerically in Cartesian coordinates. The solution provides the Cartesian coordinates and the angle between the line of constant λ and the geodesic, at any point along the geodesic. Also, the Liouville constant is computed at any point along the geodesic, allowing to check the precision of the method. An extensive data set of geodesics is used, in order to demonstrate the validity of the numerical method for the geodesic problem. We conclude that a complete, stable and precise solution of the problem is accomplished. Numéro de notice : A2019-407 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jogs-2019-0001 En ligne : https://doi.org/10.1515/jogs-2019-0001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93524
in Journal of geodetic science > vol 9 n° 1 (January 2019) . - pp 1 - 12[article]Evaluation of terrestrial and airborne gravity data over Antarctica : a generic approach / Philipp Zingerle in Journal of geodetic science, vol 9 n° 1 (January 2019)
[article]
Titre : Evaluation of terrestrial and airborne gravity data over Antarctica : a generic approach Type de document : Article/Communication Auteurs : Philipp Zingerle, Auteur ; Roland Pail, Auteur ; M. Scheinert, Auteur ; T. Schaller, Auteur Année de publication : 2019 Article en page(s) : pp 29 - 40 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] Antarctique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données localisées 3D
[Termes IGN] levé gravimétrique
[Termes IGN] modèle de géopotentielRésumé : (auteur) The AntGrav project, funded by the German Research Foundation (DFG) has the main objective to homogenize and optimize Antarctic gravity field information. Within this project an evaluation procedure is needed to inspect all different kind of gravity field surveys available in Antarctica. In this paper a suitable methodology is proposed.
We present an approach for fast 3D gravity point data reduction in different spectral bands. This is achieved through pre-calculating a fine 3D mesh of synthesized gravity functionals over the entirety of the Antarctic continent, for which two different global models are used: the combined satellite model GOCO05s for the long-wavelength part, and the topographic model Earth2014 for the shorter wavelengths. To maximize the applicability separate meshes are calculated for different spectral bands in order to specifically reduce a certain band or a selected combination. All meshes are calculated for gravity anomalies as well as gravity disturbances. Utilizing these meshes, synthesized gravity data at arbitrary positions is computed by conventional 3D interpolation methods (e.g. linear, cubic or spline).
It is shown that the applied approach can reach a worst-case interpolation error of less than 1 mGal. Evaluation results are presented for the AntGG grid and exemplary for the in-situ measurements of the AGAP and BAS-LAND campaigns. While general properties, large-scale errors and systematic effects can usually be detected, small-scale errors (e.g. of single points) are mostly untraceable due to the uncertainties within the topographic model.Numéro de notice : A2019-408 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jogs-2019-0004 Date de publication en ligne : 19/08/2019 En ligne : https://doi.org/10.1515/jogs-2019-0004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93526
in Journal of geodetic science > vol 9 n° 1 (January 2019) . - pp 29 - 40[article]Mass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space / Roland Pail in Journal of geodetic science, vol 9 n° 1 (January 2019)
[article]
Titre : Mass variation observing system by high low inter-satellite links (MOBILE) : a new concept for sustained observation of mass transport from space Type de document : Article/Communication Auteurs : Roland Pail, Auteur ; Jonathan Bamber, Auteur ; Richard Biancale, Auteur ; Rory Bingham, Auteur ; Carla Braitenberg, Auteur ; Annette Eicker, Auteur ; Frank Flechtner, Auteur ; Thomas Gruber, Auteur ; Andreas Güntner, Auteur ; Gerhard Heinzel, Auteur ; Martin Horwath, Auteur ; Laurent Longuevergne, Auteur ; J. Muller, Auteur ; Isabelle Panet , Auteur ; Hubert Savenije, Auteur ; S. Seneviratne, Auteur ; Nico Sneeuw, Auteur ; Tonie M. van Dam, Auteur ; Bert Wouters, Auteur Année de publication : 2019 Projets : 1-Pas de projet / Article en page(s) : pp 48 - 58 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] gravimétrie spatiale
[Termes IGN] harmonique sphérique
[Termes IGN] masseRésumé : (auteur) As changes in gravity are directly related to mass variability, satellite missions observing the Earth’s time varying gravity field are a unique tool for observing mass transport processes in the Earth system, such as the water cycle, rapid changes in the cryosphere, oceans, and solid Earth processes, on a global scale. The observation of Earth’s gravity field was successfully performed by the GRACE and GOCE satellite missions, and will be continued by the GRACE Follow-On mission. A comprehensive team of European scientists proposed the next-generation gravity field mission MOBILE in response to the European Space Agency (ESA) call for a Core Mission in the frame of Earth Explorer 10 (EE10). MOBILE is based on the innovative observational concept of a high-low tracking formation with micrometer ranging accuracy, complemented by new instrument concepts. Since a high-low tracking mission primarily observes the radial component of gravity-induced orbit perturbations, the error structure is close to isotropic. This geometry significantly reduces artefacts of previous along-track ranging low-low formations (GRACE, GRACE-Follow-On) such as the typical striping patterns. The minimum configuration consists of at least two medium-Earth orbiters (MEOs) at 10000 km altitude or higher, and one low-Earth orbiter (LEO) at 350-400 km. The main instrument is a laser-based distance or distance change measurement system, which is placed at the LEO. The MEOs are equipped either with passive reflectors or transponders. In a numerical closed-loop simulation, it was demonstrated that this minimum configuration is in agreement with the threshold science requirements of 5 mm equivalent water height (EWH) accuracy at 400 km wavelength, and 10 cm EWH at 200 km. MOBILE provides promising potential future perspectives by linking the concept to existing space infrastructure such as Galileo next-generation, as future element of the Copernicus/Sentinel programme, and holds the potential of miniaturization even up to swarm configurations. As such MOBILE can be considered as a precursor and role model for a sustained mass transport observing system from space. Numéro de notice : A2019-635 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jogs-2019-0006 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1515/jogs-2019-0006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95454
in Journal of geodetic science > vol 9 n° 1 (January 2019) . - pp 48 - 58[article]