Paru le : 01/12/2019 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierExtracting urban landmarks from geographical datasets using a random forests classifier / Yue Lin in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
[article]
Titre : Extracting urban landmarks from geographical datasets using a random forests classifier Type de document : Article/Communication Auteurs : Yue Lin, Auteur ; Yuyang Cai, Auteur ; Yue Gong, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 2406 - 2423 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] extraction automatique
[Termes IGN] gestion des itinéraires
[Termes IGN] jeu de données localisées
[Termes IGN] point de repère
[Termes IGN] précision de la classification
[Termes IGN] représentation mentale spatiale
[Termes IGN] saillance
[Termes IGN] Shenzhen
[Termes IGN] villeRésumé : (auteur) Urban landmarks are of significant importance to spatial cognition and route navigation. However, the current landmark extraction methods mainly focus on the visual salience of landmarks and are insufficient for obtaining high extraction accuracy when the size of the geographical dataset varies. This study introduces a random forests (RF) classifier combining with the synthetic minority oversampling technique (SMOTE) in urban landmark extraction. Both GIS and social sensing data are employed to quantify the structural and cognitive salience of the examined urban features, which are available from basic spatial databases or mainstream web service application programming interfaces (APIs). The results show that the SMOTE-RF model performs well in urban landmark extraction, with the values of recall, precision, F-measure and AUC reaching 0.851, 0.831, 0.841 and 0.841, respectively. Additionally, this method is suitable for both large and small geographical datasets. The ranking of variable importance given by this model further indicates that certain cognitive measures – such as feature class, Weibo popularity and Bing popularity – can serve as crucial factors for determining a landmark. The optimal variable combination for landmark extraction is also acquired, which might provide support for eliminating the variable selection requirement in other landmark extraction methods. Numéro de notice : A2019-426 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1620238 Date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1080/13658816.2019.1620238 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93559
in International journal of geographical information science IJGIS > vol 33 n° 12 (December 2019) . - pp 2406 - 2423[article]Mapping urban fingerprints of odonyms automatically extracted from French novels / Ludovic Moncla in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
[article]
Titre : Mapping urban fingerprints of odonyms automatically extracted from French novels Type de document : Article/Communication Auteurs : Ludovic Moncla , Auteur ; Mauro Gaio, Auteur ; Thierry Joliveau, Auteur ; Yves-François Le Lay, Auteur ; Pierre-Olivier Mazagol, Auteur Année de publication : 2019 Article en page(s) : pp 2477 - 2497 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Toponymie
[Termes IGN] dix-neuvième siècle
[Termes IGN] empreinte
[Termes IGN] extraction automatique
[Termes IGN] Geoparsing
[Termes IGN] langage naturel (informatique)
[Termes IGN] littérature
[Termes IGN] odonymie
[Termes IGN] Paris (75)
[Termes IGN] reconnaissance de noms
[Termes IGN] route
[Termes IGN] traitement du langage naturelRésumé : (auteur) In this paper, we propose and discuss a methodology to map the spatial fingerprints of novels and authors based on all of the named urban roads (i.e., odonyms) extracted from novels. We present several ways to explore Parisian space and fictional landscapes by interactively and simultaneously browsing geographical space and literary text. Our project involves building a platform capable of retrieving, mapping and analyzing the occurrences of named urban roads in novels in which the action occurs wholly or partly in Paris. This platform will be used in several areas, such as cultural tourism, urban research, and literary analysis. The paper focuses on extracting named urban roads and mapping the results for a sample of 31 novels published between 1800 and 1914. Two approaches to the annotation of odonyms are compared. First, we describe a proof of concept using queries made via the TXM textual analysis platform. Then, we describe an automatic process using a natural language processing (NLP) method. Additionally, we mention how the geosemantic information annotated from the text (e.g., a structure combining verbs, spatial relations, named entities, adjectives and adverbs) can be used to automatically characterize the semantic content associated with named urban roads. Numéro de notice : A2019-427 Affiliation des auteurs : non IGN Thématique : TOPONYMIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1584804 Date de publication en ligne : 17/03/2019 En ligne : https://doi.org/10.1080/13658816.2019.1584804 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93560
in International journal of geographical information science IJGIS > vol 33 n° 12 (December 2019) . - pp 2477 - 2497[article]