Geodesy and cartography / Vilnius Gediminas Technical University (Lituanie) . vol 45 n° 1Paru le : 01/01/2019 |
[n° ou bulletin]
est un bulletin de Geodesy and cartography / Vilnius Gediminas Technical University (Lituanie) (2011 - )
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierLeast squares support vector machine model for coordinate transformation / Yao Yevenyo Ziggah in Geodesy and cartography, vol 45 n° 1 (2019)
[article]
Titre : Least squares support vector machine model for coordinate transformation Type de document : Article/Communication Auteurs : Yao Yevenyo Ziggah, Auteur Année de publication : 2019 Article en page(s) : pp 16 - 27 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] Ghana
[Termes IGN] méthode des moindres carrés
[Termes IGN] projection conforme
[Termes IGN] résidu
[Termes IGN] séparateur à vaste marge
[Termes IGN] transformation affine
[Termes IGN] transformation de coordonnéesRésumé : (auteur) In coordinate transformation, the main purpose is to provide a mathematical relationship between coordinates related to different geodetic reference frames. This gives the geospatial professionals the opportunity to link different datums together. Review of previous studies indicates that empirical and soft computing models have been proposed in recent times for coordinate transformation. The main aim of this study is to present the applicability and performance of Least Squares Support Vector Machine (LS-SVM) which is an extension of the Support Vector Machine (SVM) for coordinate transformation. For comparison purpose, the SVM and the widely used Backpropagation Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN), 2D conformal and affine methods were also employed. To assess how well the transformation results fit the observed data, the root mean square of the residual horizontal distances and standard deviation were used. From the results obtained, the LS-SVM and RBFNN had comparable results and were better than the other methods. The overall statistical findings produced by LS-SVM met the accuracy requirement for cadastral surveying applications in Ghana. To this end, the proposed LS-SVM is known to possess promising predictive capabilities and could efficiently be used as a supplementary technique for coordinate transformation. Numéro de notice : A2019-482 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3846/gac.2019.6053 Date de publication en ligne : 17/04/2019 En ligne : https://doi.org/10.3846/gac.2019.6053 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93629
in Geodesy and cartography > vol 45 n° 1 (2019) . - pp 16 - 27[article]