ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 157Paru le : 01/11/2019 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2019111 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2019113 | DEP-RECP | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2019112 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierAccurate modelling of canopy traits from seasonal Sentinel-2 imagery based on the vertical distribution of leaf traits / Tawanda W. Gara in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
[article]
Titre : Accurate modelling of canopy traits from seasonal Sentinel-2 imagery based on the vertical distribution of leaf traits Type de document : Article/Communication Auteurs : Tawanda W. Gara, Auteur ; Roshanak Darvishzadeh, Auteur ; Andrew K. Skidmore, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 108 - 123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Bavière (Allemagne)
[Termes IGN] canopée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] écosystème forestier
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice foliaire
[Termes IGN] Leaf Mass per Area
[Termes IGN] photosynthèse
[Termes IGN] variation saisonnièreRésumé : (Auteur) Leaf traits at canopy level (hereinafter canopy traits) are conventionally expressed as a product of total canopy leaf area index (LAI) and leaf trait content based on samples collected from the exposed upper canopy. This traditional expression is centered on the theory that absorption of incident photosynthetically active radiation (PAR) follow a bell-shaped function skewed to the upper canopy. However, the validity of this theory has remained untested for a suite of canopy traits in a temperate forest ecosystem across multiple seasons using multispectral imagery. In this study, we examined the effect of canopy traits expression in modelling canopy traits using Sentinel-2 multispectral data across the growing season in Bavaria Forest National Park (BFNP), Germany. To achieve this, we measured leaf mass per area (LMA), chlorophyll (Cab), nitrogen (N) and carbon content and LAI from the exposed upper and shaded lower canopy respectively over three seasons (spring, summer and autumn). Subsequently, we estimated canopy traits using two expressions, i.e. the traditional expression-based on the product of LAI and leaf traits content of samples collected from the sunlit upper canopy (hereinafter top-of-canopy expression) and the weighted expression - established on the proportion between the shaded lower and sunlit upper canopy LAI and their respective leaf traits content. Using a Random Forest machine-learning algorithm, we separately modelled canopy traits estimated from the two expressions using Sentinel-2 spectral bands and vegetation indices. Our results showed that dry matter related canopy traits (LMA, N and carbon) estimated based on the weighted canopy expression yield stronger correlations and higher prediction accuracy (NRMSECV 0.48 µg/cm2) across all seasons. We also developed a generalized model that explained 52.57–67.82% variation in canopy traits across the three seasons. Using the most accurate Random Forest model for each season, we demonstrated the capability of Sentinel-2 data to map seasonal dynamics of canopy traits across the park. Results presented in this study revealed that canopy trait expression can have a profound effect on modelling the accuracy of canopy traits using satellite imagery throughout the growing seasons. These findings have implications on model accuracy when monitoring the dynamics of ecosystem functions, processes and services. Numéro de notice : A2019-493 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.005 Date de publication en ligne : 11/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.005 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93725
in ISPRS Journal of photogrammetry and remote sensing > vol 157 (November 2019) . - pp 108 - 123[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery / Yuri Shendryk in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
[article]
Titre : Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery Type de document : Article/Communication Auteurs : Yuri Shendryk, Auteur ; Yannik Rist, Auteur ; Catherine Ticehurst, Auteur ; Peter Thorburn, Auteur Année de publication : 2019 Article en page(s) : pp 124 - 136 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Amazonie
[Termes IGN] apprentissage profond
[Termes IGN] Australie
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'ombre
[Termes IGN] état de l'art
[Termes IGN] image à haute résolution
[Termes IGN] image PlanetScope
[Termes IGN] image Sentinel-MSI
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] nuage
[Termes IGN] occupation du sol
[Termes IGN] zone tropicale humideRésumé : (Auteur) With the increasing availability of high-resolution satellite imagery it is important to improve the efficiency and accuracy of satellite image indexing, retrieval and classification. Furthermore, there is a need for utilizing all available satellite imagery in identifying general land cover types and monitoring their changes through time irrespective of their spatial, spectral, temporal and radiometric resolutions. Therefore, in this study, we developed deep learning models able to efficiently and accurately classify cloud, shadow and land cover scenes in different high-resolution ( Numéro de notice : A2019-494 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.08.018 Date de publication en ligne : 17/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.08.018 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93727
in ISPRS Journal of photogrammetry and remote sensing > vol 157 (November 2019) . - pp 124 - 136[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images / Cheolhee Yoo in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
[article]
Titre : Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images Type de document : Article/Communication Auteurs : Cheolhee Yoo, Auteur ; Daehyeon Han, Auteur ; Jungho Im, Auteur ; Benjamin Bechtel, Auteur Année de publication : 2019 Article en page(s) : pp 155 - 170 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] Chicago (Illinois)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] climat urbain
[Termes IGN] Hong-Kong
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat-8
[Termes IGN] Madrid (Espagne)
[Termes IGN] Rome
[Termes IGN] World Urban Database and Access Portal Tools
[Termes IGN] zone urbaine denseRésumé : (Auteur) The Local Climate Zone (LCZ) scheme is a classification system providing a standardization framework to present the characteristics of urban forms and functions, especially for urban heat island (UHI) research. Landsat-based 100 m resolution LCZ maps have been classified by the World Urban Database and Portal Tool (WUDAPT) method using a random forest (RF) machine learning classifier. Some studies have proposed modified RF and convolutional neural network (CNN) approaches. This study aims to compare CNN with an RF classifier for LCZ mapping in great detail. We designed five schemes (three RF-based schemes (S1–S3) and two CNN-based ones (S4–S5)), which consist of various combinations of input features from bitemporal Landsat 8 data over four global mega cities: Rome, Hong Kong, Madrid, and Chicago. Among the five schemes, the CNN-based one with the incorporation of a larger neighborhood information showed the best classification performance. When compared to the WUDAPT workflow, the overall accuracies for entire land cover classes (OA) and for urban LCZ types (i.e., LCZ1-10; OAurb) increased by about 6–8% and 10–13%, respectively, for the four cities. The transferability of LCZ models for the four cities were evaluated, showing that CNN consistently resulted in higher accuracy (increased by about 7–18% and 18–29% for OA and OAurb, respectively) than RF. This study revealed that the CNN classifier classified particularly well for the specific LCZ classes in which buildings were mixed with trees or buildings or plants were sparsely distributed. The research findings can provide a basis for guidance of future LCZ classification using deep learning. Numéro de notice : A2019-495 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.009 Date de publication en ligne : 19/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.009 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93728
in ISPRS Journal of photogrammetry and remote sensing > vol 157 (November 2019) . - pp 155 - 170[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Context pyramidal network for stereo matching regularized by disparity gradients / Junhua Kang in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
[article]
Titre : Context pyramidal network for stereo matching regularized by disparity gradients Type de document : Article/Communication Auteurs : Junhua Kang, Auteur ; Lin Chen, Auteur ; Fei Deng, Auteur ; Christian Heipke, Auteur Année de publication : 2019 Article en page(s) : pp 201 - 215 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] appariement de formes
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] gradient
[Termes IGN] vision par ordinateur
[Termes IGN] vision stéréoscopiqueRésumé : (Auteur) Also after many years of research, stereo matching remains to be a challenging task in photogrammetry and computer vision. Recent work has achieved great progress by formulating dense stereo matching as a pixel-wise learning task to be resolved with a deep convolutional neural network (CNN). However, most estimation methods, including traditional and deep learning approaches, still have difficulty to handle real-world challenging scenarios, especially those including large depth discontinuity and low texture areas.
To tackle these problems, we investigate a recently proposed end-to-end disparity learning network, DispNet (Mayer et al., 2015), and improve it to yield better results in these problematic areas. The improvements consist of three major contributions. First, we use dilated convolutions to develop a context pyramidal feature extraction module. A dilated convolution expands the receptive field of view when extracting features, and aggregates more contextual information, which allows our network to be more robust in weakly textured areas. Second, we construct the matching cost volume with patch-based correlation to handle larger disparities. We also modify the basic encoder-decoder module to regress detailed disparity images with full resolution. Third, instead of using post-processing steps to impose smoothness in the presence of depth discontinuities, we incorporate disparity gradient information as a gradient regularizer into the loss function to preserve local structure details in large depth discontinuity areas.
We evaluate our model in terms of end-point-error on several challenging stereo datasets including Scene Flow, Sintel and KITTI. Experimental results demonstrate that our model decreases the estimation error compared with DispNet on most datasets (e.g. we obtain an improvement of 46% on Sintel) and estimates better structure-preserving disparity maps. Moreover, our proposal also achieves competitive performance compared to other methods.Numéro de notice : A2019-496 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.012 Date de publication en ligne : 27/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.012 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93729
in ISPRS Journal of photogrammetry and remote sensing > vol 157 (November 2019) . - pp 201 - 215[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt