[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierPotential of Landsat-8 and Sentinel-2A composite for land use land cover analysis / Divyesh Varade in Geocarto international, vol 34 n° 14 ([30/10/2019])
[article]
Titre : Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis Type de document : Article/Communication Auteurs : Divyesh Varade, Auteur ; Anudeep Sure, Auteur ; Onkar Dikshit, Auteur Année de publication : 2019 Article en page(s) : pp 1552 - 1567 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse linéaire des mélanges spectraux
[Termes IGN] classification dirigée
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] Inde
[Termes IGN] occupation du sol
[Termes IGN] réflectance spectrale
[Termes IGN] utilisation du solRésumé : (auteur) This study proposes the development of a multi-sensor, multi-spectral composite from Landsat-8 and Sentinel-2A imagery referred to as ‘LSC’ for land use land cover (LULC) characterisation and compared with respect to the hyperspectral imagery of the EO1: Hyperion sensor. A three-stage evaluation was implemented based on the similarity observed in the spectral response, supervised classification results and endmember abundance information obtained using linear spectral unmixing. The study was conducted for two areas located around Dhundi and Rohtak in Himachal Pradesh and Haryana, respectively. According to the analysis of the spectral reflectance curves, the spectral response of the LSC is capable of identifying major LULC classes. The kappa accuracy of 0.85 and 0.66 was observed for the classification results from LSC and Hyperion data for Dhundi and Rohtak datasets, respectively. The coefficient of determination was found to be above 0.9 for the LULC classes in both the datasets as compared to Hyperion, indicating a good agreement. Thus, these three-stage results indicated the significant potential of a composite derived from freely available multi-sensor multi-spectral imagery as an alternative to hyperspectral imagery for LULC studies. Numéro de notice : A2019-527 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1497096 Date de publication en ligne : 07/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1497096 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94101
in Geocarto international > vol 34 n° 14 [30/10/2019] . - pp 1552 - 1567[article]Residences information extraction from Landsat imagery using the multi-parameter decision tree method / Yujie Yang in Geocarto international, vol 34 n° 14 ([30/10/2019])
[article]
Titre : Residences information extraction from Landsat imagery using the multi-parameter decision tree method Type de document : Article/Communication Auteurs : Yujie Yang, Auteur ; Shijie Wang, Auteur ; Xiaoyong Bai, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 1621 - 1633 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] albedo
[Termes IGN] analyse spectrale
[Termes IGN] classification par arbre de décision
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] eau
[Termes IGN] image Landsat-OLI
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] occupation du sol
[Termes IGN] ombre
[Termes IGN] série temporelle
[Termes IGN] seuillage d'imageRésumé : (auteur) The rapid and accurate grasp of changes in residences is crucial for urban planning and urbanisation. However, the traditional methods for extracting residences exists several problems, which lead to inaccurate extraction results. In this study, the Landsat image is used to establish a new method for extracting the residences quickly and accurately. The specific steps are as follows: (1) We calculate surface albedo to exclude the interference of waters and shadows; (2) Using single-band threshold method, we eliminate the interference of shadows; (3) Normalized Difference Vegetation Index is calculated to exclude the effects of vegetation; (4) Roads are removed by calculating the shape index. Verification shows that the accuracy of this extraction method is 92.81%, which is more accurate than the traditional methods and solves the problems existed in the traditional methods. This novel method is a new reference for other land cover research on the technical aspect. Numéro de notice : A2019-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1494760 Date de publication en ligne : 07/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1494760 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94106
in Geocarto international > vol 34 n° 14 [30/10/2019] . - pp 1621 - 1633[article]Segmenting mangrove ecosystems drone images using SLIC superpixels / Edward Zimudzi in Geocarto international, vol 34 n° 14 ([30/10/2019])
[article]
Titre : Segmenting mangrove ecosystems drone images using SLIC superpixels Type de document : Article/Communication Auteurs : Edward Zimudzi, Auteur ; Ian Sanders, Auteur ; Nicholas Rollings, Auteur ; Christian Omlin, Auteur Année de publication : 2019 Article en page(s) : pp 1648 - 1662 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme SLIC
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification pixellaire
[Termes IGN] écosystème
[Termes IGN] Fidji
[Termes IGN] image captée par drone
[Termes IGN] mangrove
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotoplan numérique
[Termes IGN] segmentation d'image
[Termes IGN] superpixelRésumé : (auteur) Mangrove ecosystems play a very important ecological role on land–ocean interfaces in tropical regions. These ecosystems comprise of various tree species and aquatic animals, protecting the environment and providing a habitat that supports many living organisms including humans. The identification of image regions in mangrove ecosystems plays a significant role in ecosystem monitoring and conservation. Recent studies have suggested oversegmentation of colour images using superpixels as a solution to the segmentation of image regions. This study used the SLIC superpixel algorithm and k-means clustering to segment images taken from a camera mounted on a drone from a mangrove ecosystem in Fiji. The SLIC superpixel algorithm performed well to demarcate image regions with similar colour and texture information into patches and to use k-means for the segmentation of the whole image. These results lend support to the use of superpixel algorithms for the segmentation of mangrove ecosystems. Understanding how superpixels can be used for the segmentation of drone images will assist conservation efforts in mangrove ecosystems. Numéro de notice : A2019-539 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1497093 Date de publication en ligne : 22/10/2018 En ligne : https://doi.org/10.1080/10106049.2018.1497093 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94114
in Geocarto international > vol 34 n° 14 [30/10/2019] . - pp 1648 - 1662[article]