Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 85 n° 11Paru le : 01/11/2019 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
105-2019111 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierSemiautomatically register MMS LiDAR points and panoramic image sequence using road lamp and lane / Ningning Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 11 (November 2019)
[article]
Titre : Semiautomatically register MMS LiDAR points and panoramic image sequence using road lamp and lane Type de document : Article/Communication Auteurs : Ningning Zhu, Auteur ; Yonghong Jia, Auteur ; Xia Huang, Auteur Année de publication : 2019 Article en page(s) : pp 829 - 840 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] appariement de points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] éclairage public
[Termes IGN] extraction de points
[Termes IGN] image panoramique
[Termes IGN] mobilier urbain
[Termes IGN] semis de points
[Termes IGN] séquence d'images
[Termes IGN] transformation linéaire directeRésumé : (Auteur) We propose using the feature points of road lamp and lane to register mobile mapping system (MMS) LiDAR points and panoramic image sequence. Road lamp and lane are the common objects on roads; the spatial distributions are regular, and thus our registration method has wide applicability and high precision. First, the road lamp and lane were extracted from the LiDAR points by horizontal grid and reflectance intensity and then by optimizing the endpoints as the feature points of road lamp and lane. Second, the feature points were projected onto the panoramic image by initial parameters and then by extracting corresponding feature points near the projection location. Third, the direct linear transformation method was used to solve the registration model and eliminate mismatching feature points. In the experiments, we compare the accuracy of our registration method with other registration methods by a sequence of panoramic images. The results show that our registration method is effective; the registration accuracy of our method is less than 10 pixels and averaged 5.84 pixels in all 31 panoramic images (4000 × 8000 pixels), which is much less than that of the 56.24 pixels obtained by the original registration method. Numéro de notice : A2019-525 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article DOI : 10.14358/PERS.85.11.829 Date de publication en ligne : 01/11/2019 En ligne : https://doi.org/10.14358/PERS.85.11.829 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94062
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 11 (November 2019) . - pp 829 - 840[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019111 RAB Revue Centre de documentation En réserve L003 Disponible A double-strategy-check active learning algorithm for hyperspectral image classification / Ying Cui in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 11 (November 2019)
[article]
Titre : A double-strategy-check active learning algorithm for hyperspectral image classification Type de document : Article/Communication Auteurs : Ying Cui, Auteur ; Xiaowei Ji, Auteur ; Kai Xu, Auteur ; Liguo Wang, Auteur Année de publication : 2019 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] classification semi-dirigée
[Termes IGN] image hyperspectraleRésumé : (Auteur) Applying limited labeled samples to improve classification results is a challenge in hyperspectral images. Active Learning (AL) and Semisupervised Learning (SSL) are two promising techniques to achieve this challenge. Combining AL with SSL is an excellent idea for hyperspectral image classification. The traditional method, such as the Collaborative Active and Semisupervised Learning algorithm (CASSL), may introduce many incorrect pseudolabels and shows premature convergence. To overcome these drawbacks, a novel framework named Double-Strategy-Check Collaborative Active and Semisupervised Learning (DSC-CASSL) is proposed in this paper. This framework combines two different AL algorithms and SSL in a collaborative mode. The double-strategy verification can gradually improve the pseudolabeling accuracy and facilitate SSL. We evaluate the performance of DSC-CASSL on four hyperspectral data sets and compare it with that of four hyperspectral image classification methods. Our results suggest that DSC-CASSL leads to consistent improvement for hyperspectral image classification. Numéro de notice : A2019-526 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.85.11.841 Date de publication en ligne : 01/11/2019 En ligne : https://doi.org/10.14358/PERS.85.11.841 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94067
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 11 (November 2019)[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019111 RAB Revue Centre de documentation En réserve L003 Disponible