Remote sensing . Vol 11 n° 20Paru le : 15/10/2019 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierCombining machine learning and compact polarimetry for estimating soil moisture from C-Band SAR data / Emanuele Santi in Remote sensing, Vol 11 n° 20 (October-2 2019)
[article]
Titre : Combining machine learning and compact polarimetry for estimating soil moisture from C-Band SAR data Type de document : Article/Communication Auteurs : Emanuele Santi, Auteur ; Mohammed Dabboor, Auteur ; Simone Pettinato, Auteur ; Simonetta Paloscia, Auteur Année de publication : 2019 Article en page(s) : 18 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage automatique
[Termes IGN] bande C
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] humidité du sol
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] Manitoba (Canada)
[Termes IGN] polarimétrie
[Termes IGN] polarisation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (auteur) This research aimed at exploiting the joint use of machine learning and polarimetry for improving the retrieval of surface soil moisture content (SMC) from synthetic aperture radar (SAR) acquisitions at C-band. The study was conducted on two agricultural areas in Canada, for which a series of RADARSAT-2 (RS2) images were available along with direct measurements of SMC from in situ stations. The analysis confirmed the sensitivity of RS2 backscattering (O°) to SMC. The comparison of SMC with the compact polarimetry (CP) parameters, computed from the RS2 acquisitions by the CP data simulator, pointed out that some CP parameters had a sensitivity to SMC equal or better than O°, with correlation coe?cients up to R ' 0.4. Based on these results, the potential of machine learning (ML) for SMC retrieval was exploited by implementing and testing on the available data an artificial neural network (ANN) algorithm. The algorithm was implemented using several combinations of O° and CP parameters. Validation results of the algorithm with in situ observations confirmed the promising capabilities of the ML techniques for SMC monitoring. Furthermore, results pointed out the potential of CP in improving the SMC retrieval accuracy, especially when used in combination with linearly polarized O°. Depending on the considered input combination, the ANN algorithm was able to estimate SMC with Root Mean Square Error (RMSE) between 3% and 7% of SMC and R between 0.7 and 0.9. Numéro de notice : A2019-555 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs11202451 Date de publication en ligne : 22/10/2019 En ligne : https://doi.org/10.3390/rs11202451 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94210
in Remote sensing > Vol 11 n° 20 (October-2 2019) . - 18 p.[article]Estimating pasture biomass and canopy height in brazilian savanna using UAV photogrammetry / Juliana Batistoti in Remote sensing, Vol 11 n° 20 (October-2 2019)
[article]
Titre : Estimating pasture biomass and canopy height in brazilian savanna using UAV photogrammetry Type de document : Article/Communication Auteurs : Juliana Batistoti, Auteur ; José Marcato, Auteur ; Luis Itavo, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : 12 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] biomasse
[Termes IGN] Brésil
[Termes IGN] canopée
[Termes IGN] couvert végétal
[Termes IGN] hauteur des arbres
[Termes IGN] image à haute résolution
[Termes IGN] image captée par drone
[Termes IGN] image RVB
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] modèle numérique de terrain
[Termes IGN] Poaceae
[Termes IGN] point d'appui
[Termes IGN] positionnement cinématique en temps réelRésumé : (auteur) The Brazilian territory contains approximately 160 million hectares of pastures, and it is necessary to develop techniques to automate their management and increase their production. This technical note has two objectives: First, to estimate the canopy height using unmanned aerial vehicle (UAV) photogrammetry; second, to propose an equation for the estimation of biomass of Brazilian savanna (Cerrado) pastures based on UAV canopy height. Four experimental units of Panicum maximum cv. BRS Tamani were evaluated. Herbage mass sampling, height measurements, and UAV image collection were simultaneously performed. The UAVs were flown at a height of 50 m, and images were generated with a mean ground sample distance (GSD) of approximately 1.55 cm. The forage canopy height estimated by UAVs was calculated as the difference between the digital surface model (DSM) and the digital terrain model (DTM). The R2 between ruler height and UAV height was 0.80; between biomass (kg ha−1 GB—green biomass) and ruler height, 0.81; and between biomass (kg ha−1 GB) and UAV height, 0.74. UAV photogrammetry proved to be a potential technique to estimate height and biomass in Brazilian Panicum maximum cv. BRS Tamani pastures located in the endangered Brazilian savanna (Cerrado) biome Numéro de notice : A2019-556 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs11202447 Date de publication en ligne : 22/10/2019 En ligne : https://doi.org/10.3390/rs11202447 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94212
in Remote sensing > Vol 11 n° 20 (October-2 2019) . - 12 p.[article]Sea ice extent detection in the Bohai Sea using Sentinel-3 OLCI data / Hua Su in Remote sensing, Vol 11 n° 20 (October-2 2019)
[article]
Titre : Sea ice extent detection in the Bohai Sea using Sentinel-3 OLCI data Type de document : Article/Communication Auteurs : Hua Su, Auteur ; Bowen Ji, Auteur ; Yunpeng Wang, Auteur Année de publication : 2019 Article en page(s) : 17 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande infrarouge
[Termes IGN] changement climatique
[Termes IGN] Chine, mer de
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] glace de mer
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-OLCI
[Termes IGN] Normalized Difference Snow Index
[Termes IGN] réflectanceRésumé : (auteur) Sea ice distribution is an important indicator of ice conditions and regional climate change in the Bohai Sea (China). In this study, we monitored the spatiotemporal distribution of the Bohai Sea ice in the winter of 2017–2018 by developing sea ice information indexes using 300 m resolution Sentinel-3 Ocean and Land Color Instrument (OLCI) images. We assessed and validated the index performance using Sentinel-2 MultiSpectral Instrument (MSI) images with higher spatial resolution. The results indicate that the proposed Normalized Difference Sea Ice Information Index (NDSIIIOLCI), which is based on OLCI Bands 20 and 21, can be used to rapidly and effectively detect sea ice but is somewhat affected by the turbidity of the seawater in the southern Bohai Sea. The novel Enhanced Normalized Difference Sea Ice Information Index (ENDSIIIOLCI), which builds on NDSIIIOLCI by also considering OLCI Bands 12 and 16, can monitor sea ice more accurately and effectively than NDSIIIOLCI and suffers less from interference from turbidity. The spatiotemporal evolution of the Bohai Sea ice in the winter of 2017–2018 was successfully monitored by ENDSIIIOLCI. The results show that this sea ice information index based on OLCI data can effectively extract sea ice extent for sediment-laden water and is well suited for monitoring the evolution of Bohai Sea ice in winter. Numéro de notice : A2019-557 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs11202436 Date de publication en ligne : 29/10/2019 En ligne : https://doi.org/10.3390/rs11202436 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94214
in Remote sensing > Vol 11 n° 20 (October-2 2019) . - 17 p.[article]