ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 159Paru le : 01/01/2020 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2020011 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2020013 | DEP-RECP | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2020012 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierAutomatic scale estimation of structure from motion based 3D models using laser scalers in underwater scenarios / Klemen Istenič in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
[article]
Titre : Automatic scale estimation of structure from motion based 3D models using laser scalers in underwater scenarios Type de document : Article/Communication Auteurs : Klemen Istenič, Auteur ; Nuno Gracias, Auteur ; Aurélien Arnaubec, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 13 - 25 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] estimation de pose
[Termes IGN] étalonnage
[Termes IGN] faisceau laser
[Termes IGN] image à haute résolution
[Termes IGN] image sous-marine
[Termes IGN] photogrammétrie sous-marine
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D
[Termes IGN] structure-from-motionRésumé : (Auteur) Improvements in structure-from-motion techniques are enabling many scientific fields to benefit from the routine creation of detailed 3D models. However, for a large number of applications, only a single camera is available for the image acquisition, due to cost or space constraints in the survey platforms. Monocular structure-from-motion raises the issue of properly estimating the scale of the 3D models, in order to later use those models for metrology. The scale can be determined from the presence of visible objects of known dimensions, or from information on the magnitude of the camera motion provided by other sensors, such as GPS. This paper addresses the problem of accurately scaling 3D models created from monocular cameras in GPS-denied environments, such as in underwater applications. Motivated by the common availability of underwater laser scalers, we present two novel approaches which are suitable for different laser scaler configurations. A fully unconstrained method enables the use of arbitrary laser setups, while a partially constrained method reduces the need for calibration by only assuming parallelism on the laser beams and equidistance with the camera. The proposed methods have several advantages with respect to existing methods. By using the known geometry of the scene represented by the 3D model, along with some parameters of the laser scaler geometry, the need for laser alignment with the optical axis of the camera is eliminated. Furthermore, the extremely error-prone manual identification of image points on the 3D model, currently required in image-scaling methods, is dispensed with. The performance of the methods and their applicability was evaluated both on data generated from a realistic 3D model and on data collected during an oceanographic cruise in 2017. Three separate laser configurations have been tested, encompassing nearly all possible laser setups, to evaluate the effects of terrain roughness, noise, camera perspective angle and camera-scene distance on the final estimates of scale. In the real scenario, the computation of 6 independent model scale estimates using our fully unconstrained approach, produced values with a standard deviation of 0,3 %. By comparing the values to the only other possible method currently usable for this dataset, we showed that the consistency of scales obtained for individual lasers is much higher for our approach (0,6 % compared to 4 %). Numéro de notice : A2020-010 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.10.007 Date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.10.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94397
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 13 - 25[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California / Matthew L. Clark in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
[article]
Titre : Comparison of multi-seasonal Landsat 8, Sentinel-2 and hyperspectral images for mapping forest alliances in Northern California Type de document : Article/Communication Auteurs : Matthew L. Clark, Auteur Année de publication : 2020 Article en page(s) : pp 26 - 40 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] carte forestière
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] couvert végétal
[Termes IGN] image AVIRIS
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] Short Waves InfraRedRésumé : (Auteur) The current era of earth observation now provides constellations of open-access, multispectral satellite imagery with medium spatial resolution, greatly increasing the frequency of cloud-free data for analysis. The Landsat satellites have a long historical record, while the newer Sentinel-2 (S2) satellites offer higher temporal, spatial and spectral resolution. The goal of this study was to evaluate the relative benefits of single- and multi-seasonal multispectral satellite data for discriminating detailed forest alliances, as defined by the U.S. National Vegetation Classification system, in a Mediterranean-climate landscape (Sonoma County, California). Results were compared to a companion analysis of simulated hyperspectral satellite data (HyspIRI) for the same study site and reference data (Clark et al., 2018). Experiments used real and simulated S2 and Landsat 8 (L8) data. Simulated S2 and L8 were from HyspIRI images, thereby focusing results on differences in spectral resolution rather than other confounding factors. The Support Vector Machine (SVM) classifier was used in a hierarchical classification of land-cover (Level 1), followed by alliances (Level 2) in forest pixels, and included summer-only and multi-seasonal sets of predictor variables (bands, indices and bands plus indices). Both real and simulated multi-seasonal multispectral variables significantly improved overall accuracy (OA) by 0.2–1.6% for Level 1 tree/no tree classifications and 3.6–25.8% for Level 2 forest alliances. Classifiers with S2 variables tended to be more accurate than L8 variables, particularly for S2, which had 0.4–2.1% and 5.1–11.8% significantly higher OA than L8 for Level 1 tree/no tree and Level 2 forest alliances, respectively. Combining multispectral bands and indices or using just bands was generally more accurate than relying on just indices for classification. Simulated HyspIRI variables from past research had significantly greater accuracy than real L8 and S2 variables, with an average OA increase of 8.2–12.6%. A final alliance-level map used for a deeper analysis used simulated multi-seasonal S2 bands and indices, which had an overall accuracy of 74.3% (Kappa = 0.70). The accuracy of this classification was only 1.6% significantly lower than the best HyspIRI-based classification, which used multi-seasonal metrics (Clark et al., 2018), and there were alliances where the S2-based classifier was more accurate. Within the context of these analyses and study area, S2 spectral-temporal data demonstrated a strong capability for mapping global forest alliances, or similar detailed floristic associations, at medium spatial resolutions (10–30 m). Numéro de notice : A2020-011 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.007 Date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94399
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 26 - 40[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems / Dong Chen in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
[article]
Titre : A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems Type de document : Article/Communication Auteurs : Dong Chen, Auteur ; Tatiana V. Loboda, Auteur ; Joanne V. Hall, Auteur Année de publication : 2020 Article en page(s) : pp 63 - 77 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] Canada
[Termes IGN] changement climatique
[Termes IGN] écosystème forestier
[Termes IGN] forêt boréale
[Termes IGN] image Landsat
[Termes IGN] incendie de forêt
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] perturbation écologique
[Termes IGN] Short Waves InfraRed
[Termes IGN] toundraRésumé : (Auteur) Satellite imagery has been widely used for the assessment of wildfire burn severity within the scientific community and fire management agencies. Multiple indices have been proposed to assess burn severity, among which the differenced Normalized Burn Ratio (dNBR) is arguably the most commonly used index that is expected to provide an objective and consistent assessment. However, although evidence of variability in the dNBR-based assessment of burn severity driven by image pair selection has been shown in many studies, the comprehensive examination of the extent of the bias resulting from the image selection has been lacking. In this study, we focus on three factors of the image selection process which are encountered by most Landsat-derived dNBR applications, including the sensor combination and the difference in timing of image acquisition (for both the year and seasonality) of pre- and post-fire image pairs. Through separate analyses, each targeting a single factor, we show that Landsat sensor combination between the pre- and post-fire images has a limited impact on the dNBR values. The difference in the year of acquisition between the images in the image pairs is shown to influence dNBR assessment with a noticeable increase in mean dNBR (>0.1) with only a single year difference between images compared to multi-year differences. However, differences in the image acquisition seasons and the resulting phenological differences is shown to impact dNBR values most considerably. Based on our results, we warn against the calculation of dNBR when the images are acquired in different seasons. We believe that despite the existence of multiple derivatives of dNBR, there remains a need for an improved version; one that is less susceptible to the phenological impacts introduced by the selected images. Numéro de notice : A2020-012 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.011 Date de publication en ligne : 19/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94400
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 63 - 77[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Estimation of soil surface water contents for intertidal mudflats using a near-infrared long-range terrestrial laser scanner / Kai Tan in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
[article]
Titre : Estimation of soil surface water contents for intertidal mudflats using a near-infrared long-range terrestrial laser scanner Type de document : Article/Communication Auteurs : Kai Tan, Auteur ; Jin Chen, Auteur ; Weiguo Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 129 - 139 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] données TLS (télémétrie)
[Termes IGN] humidité du sol
[Termes IGN] littoral
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestre
[Termes IGN] teneur en vapeur d'eau
[Termes IGN] vaseRésumé : (Auteur) Estimations of the soil surface water contents and distributions play a key role in the ecological, environmental, and topographical investigations for intertidal mudflats. However, existing techniques have limitations. Long-range terrestrial laser scanners (TLSs) can record the co-located intensity value which refers to a measure of the backscattered laser from each scanned point. Most long-range TLSs emit near-infrared lasers that can be strongly absorbed by water. Thus, the intensity values can be used as proxies for water contents. In this study, the intensity data of long-range TLSs are corrected for the incidence angle and distance effects to quantitatively estimate the soil surface water contents of intertidal mudflats. A case study for a mudflat in Chongming Island, Shanghai, China, is conducted. Results indicate that compared with traditional techniques, the corrected intensity data of long-range TLSs are extremely effective data sources for a quick, accurate, and detailed estimation of water contents for large-area mudflats. The estimation root mean square error is approximately 3%. Furthermore, the 3D distributions of the water contents can be accurately mapped by combining the point cloud of the mudflats to potentially analyze the intrinsic association among water contents and topography, vegetation coverage, and habitation of creatures in mudflats. Numéro de notice : A2020-013 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1016/j.isprsjprs.2019.11.003 Date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.003 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94402
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 129 - 139[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation / Li Mi in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
[article]
Titre : Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation Type de document : Article/Communication Auteurs : Li Mi, Auteur ; Zhenzhong Chen, Auteur Année de publication : 2020 Article en page(s) : pp 140 - 152 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] algorithme SLIC
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image à très haute résolution
[Termes IGN] processus stochastique
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation sémantique
[Termes IGN] superpixelRésumé : (Auteur) Semantic segmentation plays an important role in remote sensing image understanding. Great progress has been made in this area with the development of Deep Convolutional Neural Networks (DCNNs). However, due to the complexity of ground objects’ spectrum, DCNNs with simple classifier have difficulties in distinguishing ground object categories even though they can represent image features effectively. Additionally, DCNN-based semantic segmentation methods learn to accumulate contextual information over large receptive fields that causes blur on object boundaries. In this work, a novel approach named Superpixel-enhanced Deep Neural Forest (SDNF) is proposed to target the aforementioned problems. To improve the classification ability, we introduce Deep Neural Forest (DNF), where the representation learning of deep neural network is conducted by a completely differentiable decision forest. Therefore, better classification accuracy is achieved by combining DCNNs with decision forests in an end-to-end manner. In addition, considering the homogeneity within superpixels and heterogeneity between superpixels, a Superpixel-enhanced Region Module (SRM) is proposed to further alleviate the noises and strengthen edges of ground objects. Experimental results on the ISPRS 2D semantic labeling benchmark demonstrate that our model significantly outperforms state-of-the-art methods thus validate the efficiency of our proposed SDNF. Numéro de notice : A2020-014 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.006 Date de publication en ligne : 29/11/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.006 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94403
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 140 - 152[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Camera orientation, calibration and inverse perspective with uncertainties: a Bayesian method applied to area estimation from diverse photographs / Grégoire Guillet in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
[article]
Titre : Camera orientation, calibration and inverse perspective with uncertainties: a Bayesian method applied to area estimation from diverse photographs Type de document : Article/Communication Auteurs : Grégoire Guillet, Auteur ; Thomas Guillet, Auteur ; Ludovic Ravanel, Auteur Année de publication : 2020 Article en page(s) : pp 237 - 255 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] ajustement de paramètres
[Termes IGN] appariement d'images
[Termes IGN] autocorrélation spatiale
[Termes IGN] distorsion d'image
[Termes IGN] estimation bayesienne
[Termes IGN] étalonnage de chambre métrique
[Termes IGN] figuration de la densité
[Termes IGN] fonction inverse
[Termes IGN] image 2D
[Termes IGN] image aérienne
[Termes IGN] incertitude géométrique
[Termes IGN] longueur focale
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle numérique de surface
[Termes IGN] orientation externe
[Termes IGN] photographie numérique
[Termes IGN] vue 3D
[Termes IGN] vue perspectiveRésumé : (Auteur) Large collections of images have become readily available through modern digital catalogs, from sources as diverse as historical photographs, aerial surveys, or user-contributed pictures. Exploiting the quantitative information present in such wide-ranging collections can greatly benefit studies that follow the evolution of landscape features over decades, such as measuring areas of glaciers to study their shrinking under climate change. However, many available images were taken with low-quality lenses and unknown camera parameters. Useful quantitative data may still be extracted, but it becomes important to both account for imperfect optics, and estimate the uncertainty of the derived quantities. In this paper, we present a method to address both these goals, and apply it to the estimation of the area of a landscape feature traced as a polygon on the image of interest. The technique is based on a Bayesian formulation of the camera calibration problem. First, the probability density function (PDF) of the unknown camera parameters is determined for the image, based on matches between 2D (image) and 3D (world) points together with any available prior information. In a second step, the posterior distribution of the feature area of interest is derived from the PDF of camera parameters. In this step, we also model systematic errors arising in the polygon tracing process, as well as uncertainties in the digital elevation model. The resulting area PDF therefore accounts for most sources of uncertainty. We present validation experiments, and show that the model produces accurate and consistent results. We also demonstrate that in some cases, accounting for optical lens distortions is crucial for accurate area determination with consumer-grade lenses. The technique can be applied to many other types of quantitative features to be extracted from photographs when careful error estimation is important. Numéro de notice : A2020-015 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.013 Date de publication en ligne : 02/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.013 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94404
in ISPRS Journal of photogrammetry and remote sensing > vol 159 (January 2020) . - pp 237 - 255[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt