[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
059-2020011 | RAB | Livre | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierModelling the orthoimage accuracy using DEM accuracy and off-nadir angle / Altan Yilmaz in Geocarto international, Vol 35 n° 1 ([02/01/2020])
[article]
Titre : Modelling the orthoimage accuracy using DEM accuracy and off-nadir angle Type de document : Article/Communication Auteurs : Altan Yilmaz, Auteur ; Mustafa Erdogan, Auteur Année de publication : 2020 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] angle nadiral
[Termes IGN] centrale inertielle
[Termes IGN] erreur
[Termes IGN] erreur moyenne quadratique
[Termes IGN] modèle empirique
[Termes IGN] modèle numérique de surface
[Termes IGN] orthoimage
[Termes IGN] planimétrie
[Termes IGN] point d'appuiRésumé : (auteur) Orthoimages are differentially rectified images that are corrected for the distortions caused especially by image tilt and topographic relief. The orientation, digital elevation model (DEM) and off-nadir angle plays an important role in orthoimage accuracy. The orientation error mostly occurs due to the quality and distribution of the ground control points. In this study, an attempt has been made to model the remaining errors by keeping the orientation error constant. To model the accuracy, orthoimages are produced with eight DEMs having different accuracies and are assessed using 50 check points. As the theoretical model cannot reflect the real world exactly, an empirical model is used for estimating the orthoimage accuracy. This proposed model was validated by another dataset. It is concluded that statistically there is no significant difference between the calculated model and real planimetric errors. The proposed model can be used in predicting orthoimage accuracy provided that the DEM accuracy and off-nadir angles of the points are known. Numéro de notice : A2020-016 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1493157 Date de publication en ligne : 12/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1493157 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94409
in Geocarto international > Vol 35 n° 1 [02/01/2020] . - pp 1 - 16[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2020011 RAB Livre Centre de documentation En réserve L003 Disponible Artificial neural network models by ALOS PALSAR data for aboveground stand carbon predictions of pure beech stands: a case study from northern of Turkey / Alkan Günlü in Geocarto international, Vol 35 n° 1 ([02/01/2020])
[article]
Titre : Artificial neural network models by ALOS PALSAR data for aboveground stand carbon predictions of pure beech stands: a case study from northern of Turkey Type de document : Article/Communication Auteurs : Alkan Günlü, Auteur ; Ilker Erkanli, Auteur Année de publication : 2020 Article en page(s) : pp 17 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] biomasse aérienne
[Termes IGN] Fagus (genre)
[Termes IGN] image ALOS-PALSAR
[Termes IGN] peuplement forestier
[Termes IGN] puits de carbone
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificiel
[Termes IGN] TurquieRésumé : (auteur) The goal of this study was to estimate aboveground stand carbon (AGSC) of pure beech stands in Turkey with ground measurements as well as topographic information and remote sensing data. For this purpose, 153 sample plots were collected from pure beech stands in study area. The AGSC of each sample plot was computed. Eight texture images (variance, dissimilarity, homogeneity, entropy, contrast, mean, second moment and correlation) with five window sizes (3 × 3, 5 × 5, 7 × 7, 9 × 9 and 11 × 11) generated from ALOS PALSAR L-band satellite image. The AGSC models predicting the relationships between ALOS PALSAR texture values and topographic information, and sample plot AGSC were developed by using multiple linear regressions (MLR). Also, artificial neural networks (ANNs) architectures were trained by comparing various numbers of neurons and activation functions in its network types. Our results revealed the ability of ANNs was better than MLR models to predict AGSC values. Numéro de notice : A2020-017 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1499817 Date de publication en ligne : 20/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1499817 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94410
in Geocarto international > Vol 35 n° 1 [02/01/2020] . - pp 17 - 28[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2020011 RAB Livre Centre de documentation En réserve L003 Disponible