IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 57 n° 11Paru le : 01/11/2019 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA temporal phase coherence estimation algorithm and its application on DInSAR pixel selection / Feng Zhao in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
[article]
Titre : A temporal phase coherence estimation algorithm and its application on DInSAR pixel selection Type de document : Article/Communication Auteurs : Feng Zhao, Auteur ; Jordi J. Mallorquí, Auteur Année de publication : 2019 Article en page(s) : pp 8350 - 8361 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] amplitude
[Termes IGN] Barcelone
[Termes IGN] classification pixellaire
[Termes IGN] cohérence temporelle
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] interferométrie différentielle
[Termes IGN] mesurage de phaseRésumé : (auteur) Pixel selection is a crucial step of all advanced Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques that have a direct impact on the quality of the final DInSAR products. In this paper, a full-resolution phase quality estimator, i.e., the temporal phase coherence (TPC), is proposed for DInSAR pixel selection. The method is able to work with both distributed scatterers (DSs) and permanent scatterers (PSs). The influence of different neighboring window sizes and types of interferograms combinations [both the single-master (SM) and the multi-master (MM)] on TPC has been studied. The relationship between TPC and phase standard deviation (STD) of the selected pixels has also been derived. Together with the classical coherence and amplitude dispersion methods, the TPC pixel selection algorithm has been tested on 37 VV polarization Radarsat-2 images of Barcelona Airport. Results show the feasibility and effectiveness of TPC pixel selection algorithm. Besides obvious improvements in the number of selected pixels, the new method shows some other advantages comparing with the other classical two. The proposed pixel selection algorithm, which presents an affordable computational cost, is easy to be implemented and incorporated into any advanced DInSAR processing chain for high-quality pixels' identification. Numéro de notice : A2019-593 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2920536 Date de publication en ligne : 16/07/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2920536 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94585
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 11 (November 2019) . - pp 8350 - 8361[article]Soil and vegetation scattering contributions in L-Band and P-Band polarimetric SAR observations / S. Hamed Alemohammad in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
[article]
Titre : Soil and vegetation scattering contributions in L-Band and P-Band polarimetric SAR observations Type de document : Article/Communication Auteurs : S. Hamed Alemohammad, Auteur ; Thomas Jagdhuber, Auteur ; Mahta Moghaddam, Auteur ; Dara Entekhabi, Auteur Année de publication : 2019 Article en page(s) : pp 8417 - 8429 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] bande P
[Termes IGN] canopée
[Termes IGN] constante diélectrique
[Termes IGN] couvert végétal
[Termes IGN] données polarimétriques
[Termes IGN] humidité du sol
[Termes IGN] image captée par drone
[Termes IGN] image radar moirée
[Termes IGN] micro-onde
[Termes IGN] rugosité du sol
[Termes IGN] teneur en eau de la végétationRésumé : (auteur) Active microwave-based retrieval of soil moisture in vegetated areas has uncertainties due to the sensitivity of the signal to both soil (dielectric constant and roughness) and vegetation (dielectric constant and structure) properties. A multi-frequency acquisition system would increase the number of observations that may constrain soil and/or vegetation parameter retrievals. In order to realize this constraint, an understanding of microwaves interaction with the surface and vegetation across frequencies is necessary. Different microwave frequencies have varied interactions with the soil-vegetation medium and increasing penetration into the soil and canopy with the decreasing frequency. In this study, we examine the contributions of different scattering mechanisms to coincident observations from two microwave frequencies (L and P) of airborne synthetic aperture radar instruments. We quantify contributions of surface, vegetation volume, and double-bounce scattering components. Results are analyzed and discussed to guide future multi-frequency retrieval algorithm designs. Numéro de notice : A2019-594 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2920995 Date de publication en ligne : 27/06/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2920995 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94586
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 11 (November 2019) . - pp 8417 - 8429[article]Sig-NMS-based faster R-CNN combining transfer learning for small target detection in VHR optical remote sensing imagery / Ruchan Dong in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
[article]
Titre : Sig-NMS-based faster R-CNN combining transfer learning for small target detection in VHR optical remote sensing imagery Type de document : Article/Communication Auteurs : Ruchan Dong, Auteur ; Dazhuan Xu, Auteur ; Jin Zhao, Auteur ; Licheng Jiao, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 8534 - 8545 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] image à très haute résolution
[Termes IGN] régression
[Termes IGN] zone d'intérêtRésumé : (auteur) Small target detection is a challenging task in veryhigh-resolution (VHR) optical remote sensing imagery, because small targets occupy a minuscule number of pixels and are easily disturbed by backgrounds or occluded by others. Although current convolutional neural network (CNN)-based approaches perform well when detecting normal objects, they are barely suitable for detecting small ones. Two practical problems stand in their way. First, current CNN-based approaches are not specifically designed for the minuscule size of small targets (~15 or ~10 pixels in extent). Second, no well-established data sets include labeled small targets and establishing one from scratch is labor-intensive and time-consuming. To address these two issues, we propose an approach that combines Sig-NMS-based Faster R-CNN with transfer learning. Sig-NMS replaces traditional non-maximum suppression (NMS) in the stage of region proposal network and decreases the possibility of missing small targets. Transfer learning can effectively label remote sensing images by automatically annotating both object classes and object locations. We conduct an experiment on three data sets of VHR optical remote sensing images, RSOD, LEVIR, and NWPU VHR-10, to validate our approach. The results demonstrate that the proposed approach can effectively detect small targets in the VHR optical remote sensing images of about 10 × 10 pixels and automatically label small targets as well. In addition, our method presents better mean average precisions than other state-of-the-art methods: 1.5% higher when performing on the RSOD data set, 17.8% higher on the LEVIR data set, and 3.8% higher on NWPU VHR-10. Numéro de notice : A2019-595 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2921396 Date de publication en ligne : 15/07/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2921396 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94587
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 11 (November 2019) . - pp 8534 - 8545[article]Introducing spatial regularization in SAR tomography reconstruction / Clément Rambour in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
[article]
Titre : Introducing spatial regularization in SAR tomography reconstruction Type de document : Article/Communication Auteurs : Clément Rambour, Auteur ; Loïc Denis, Auteur ; Florence Tupin, Auteur ; Hélène Oriot, Auteur Année de publication : 2019 Article en page(s) : pp 8600 - 8617 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] acquisition comprimée
[Termes IGN] analyse spectrale
[Termes IGN] écho radar
[Termes IGN] fractionnement
[Termes IGN] image à très haute résolution
[Termes IGN] image radar moirée
[Termes IGN] image TerraSAR-X
[Termes IGN] mécanique de Lagrange
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] scène urbaine
[Termes IGN] TerraSAR-X
[Termes IGN] tomographie radarRésumé : (auteur) The resolution achieved by current synthetic aperture radar (SAR) sensors provides a detailed visualization of urban areas. Spaceborne sensors such as TerraSAR-X can be used to analyze large areas at a very high resolution. In addition, repeated passes of the satellite give access to temporal and interferometric information on the scene. Because of the complex 3-D structure of urban surfaces, scatterers located at different heights (ground, building facade, and roof) produce radar echoes that often get mixed within the same radar cells. These echoes must be numerically unmixed in order to get a fine understanding of the radar images. This unmixing is at the core of SAR tomography. SAR tomography reconstruction is generally performed in two steps: 1) reconstruction of the so-called tomogram by vertical focusing, at each radar resolution cell, to extract the complex amplitudes (a 1-D processing) and 2) transformation from radar geometry to ground geometry and extraction of significant scatterers. We propose to perform the tomographic inversion directly in ground geometry in order to enforce spatial regularity in 3-D space. This inversion requires solving a large-scale nonconvex optimization problem. We describe an iterative method based on variable splitting and the augmented Lagrangian technique. Spatial regularizations can easily be included in this generic scheme. We illustrate, on simulated data and a TerraSAR-X tomographic data set, the potential of this approach to produce 3-D reconstructions of urban surfaces. Numéro de notice : A2019-596 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2921756 Date de publication en ligne : 04/07/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2921756 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94588
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 11 (November 2019) . - pp 8600 - 8617[article]Unsupervised classification of multispectral images embedded with a segmentation of panchromatic images using localized clusters / Ting Mao in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
[article]
Titre : Unsupervised classification of multispectral images embedded with a segmentation of panchromatic images using localized clusters Type de document : Article/Communication Auteurs : Ting Mao, Auteur ; Wei Huang, Auteur Année de publication : 2019 Article en page(s) : pp 8732 - 8744 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de fusion
[Termes IGN] analyse de groupement
[Termes IGN] Chine
[Termes IGN] classification non dirigée
[Termes IGN] fusion d'images
[Termes IGN] image à très haute résolution
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] précision de la classification
[Termes IGN] segmentation d'image
[Termes IGN] segmentation multi-échelle
[Termes IGN] superpixelRésumé : (auteur) There are many approaches to fuse panchromatic (PAN) and multispectral (MS) images for classification, mainly including sharpening-then-classification methods, classification-then-sharpening methods, and segmentation-then-classification methods. The generalized Chinese restaurant franchise (gCRF) is a segmentation-then-classification-like method to fuse very high resolution (VHR) PAN and MS images for classification, which has the limitation the same as that of the general segmentation-then-classification methods that segmentation errors will affect the subsequent classification. The problems of gCRF are that during the segmentation step, the spatial coherence in the image plane is deficient and the global clusters without spatial position information are used for segmentation, which may lead to undersegmented and disconnected regions in the segmentation results and decrease classification accuracy. In this paper, we propose an improved model, which overcomes the problems of the gCRF during the segmentation step, to increase the classification accuracy by the following two ways: 1) building the spatial coherence in the image plane by introducing neighborhood information of superpixels to construct the subimages and 2) using localized clusters with spatial location information instead of global clusters to measure the similarity between superpixels and segments. The experimental results show that the problems of undersegmentation and disconnected segments are both alleviated, resulting in better classification results in terms of the visual and quantitative aspects. Numéro de notice : A2019-597 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2922672 Date de publication en ligne : 17/07/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2922672 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94589
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 11 (November 2019) . - pp 8732 - 8744[article]