IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 58 n° 1Paru le : 01/01/2020 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierContext-aware convolutional neural network for object detection in VHR remote sensing imagery / Yiping Gong in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
[article]
Titre : Context-aware convolutional neural network for object detection in VHR remote sensing imagery Type de document : Article/Communication Auteurs : Yiping Gong, Auteur ; Zhifeng Xiao, Auteur ; Xiaowei Tan, Auteur Année de publication : 2020 Article en page(s) : pp 34 - 44 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] description multiniveau
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] prise en compte du contexte
[Termes IGN] vision par ordinateur
[Termes IGN] zone d'intérêtRésumé : (auteur) Object detection in very-high-resolution (VHR) remote sensing imagery remains a challenge. Environmental factors, such as illumination intensity and weather, reduce image quality, resulting in poor feature representation and limited detection accuracy. To enrich the feature representation and mine the underlying context information among objects, this article proposes a context-aware convolutional neural network (CA-CNN) model for object detection that includes proposal generation, context feature extraction, feature fusion, and classification. During feature extraction, we propose integrating a context-regions-of-interests (Context-RoIs) mining layer into the CNN model and extracting context features by mapping Context-RoIs mined from the foreground proposals to multilevel feature maps. Finally, the context features extracted from multilevel layers are fused into a single layer, and the proposals represented by the fused features are classified by a softmax classifier. In this article, through numerous experiments, we thoroughly explore the influence of key factors, such as Context-RoIs, different feature scales, and different spatial context window sizes. Because of the end-to-end network design approach, our proposed model simultaneously maintains high efficiency and effectiveness. We conducted all model testing on the public NWPU VHR-10 data set. The experimental results demonstrate that our proposed CA-CNN model achieves significantly improved model performance and better detection results compared with the state-of-the-art methods. Numéro de notice : A2020-038 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2930246 Date de publication en ligne : 23/09/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2930246 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94492
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 34 - 44[article]Impact of GPS processing on the estimation of snow water equivalent using refracted GPS signals / Ladina Steiner in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
[article]
Titre : Impact of GPS processing on the estimation of snow water equivalent using refracted GPS signals Type de document : Article/Communication Auteurs : Ladina Steiner, Auteur ; Michael Meindl, Auteur ; Christoph Marty, Auteur ; Alain Geiger, Auteur Année de publication : 2020 Article en page(s) : pp 123 - 135 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] Alpes
[Termes IGN] altitude
[Termes IGN] antenne GPS
[Termes IGN] eau de fonte
[Termes IGN] étalonnage des données
[Termes IGN] manteau neigeux
[Termes IGN] modèle hydrographique
[Termes IGN] neige
[Termes IGN] phase GPS
[Termes IGN] pondération
[Termes IGN] réfraction
[Termes IGN] signal GPS
[Termes IGN] SuisseRésumé : (auteur) Global navigation satellite system (GNSS) antennas buried underneath a snowpack have a high potential for in situ snow water equivalent (SWE) estimation. Automated and continuous SWE quantification independent of weather conditions could enhance snow hydrological monitoring and modeling. Accurate and reliable in situ data are needed for the calibration and validation of remote sensing data and snowpack modeling. A relative bias of less than 5% is achieved using sub-snow global positioning system (GPS) antennas (GPS refractometry) during a three full seasons time period in the Swiss Alps. A systematic overview regarding the temporal reliability of the sub-snow GPS derived results is, however, missing for this emerging technique. Moreover, GPS processing impacts the results significantly. Different GPS processing parameters are therefore selected and their influence on the SWE estimation is investigated. The impact of elevation-dependent weighting, the elevation cutoff angles, and the time intervals for SWE estimation are systematically assessed. The best results are achieved using all observations with an elevation-dependent weighting scheme. Moreover, the SWE estimation performance is equally accurate for hourly SWE estimation as for lower temporal resolutions up to daily estimates. The impact of snow on the coordinate solution is furthermore evaluated. While the east and north components are not systematically influenced by the overlying snowpack, the vertical component exhibits a significant variation and strongly depends on the SWE. The biased vertical component therefore provides an additional possibility to estimate SWE. Numéro de notice : A2020-074 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2934016 Date de publication en ligne : 06/09/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2934016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94605
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 123 - 135[article]Global iterative geometric calibration of a linear optical satellite based on sparse GCPs / Yingdong Pi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
[article]
Titre : Global iterative geometric calibration of a linear optical satellite based on sparse GCPs Type de document : Article/Communication Auteurs : Yingdong Pi, Auteur ; Xin Li, Auteur ; Bo Yang, Auteur Année de publication : 2020 Article en page(s) : pp 436 - 446 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] élément d'orientation interne
[Termes IGN] erreur systématique
[Termes IGN] étalonnage géométrique
[Termes IGN] image satellite
[Termes IGN] image SPOT-HRV
[Termes IGN] itération
[Termes IGN] longueur focale
[Termes IGN] modèle numérique de surface
[Termes IGN] point d'appuiRésumé : (auteur) Independent methods for geometric calibration (GC) have become an important research direction in the field of optical satellite technology. The main purpose of this research is to eliminate dependence on ground calibration sites using relative constraints between images. Based on a systematic analysis of these relative constraints, we found that it was difficult, if not impossible, to completely eliminate ground constraints, although the number of ground control points (GCPs) required can be greatly reduced. To achieve practical GC with high accuracy and low cost, we proposed a new method to compensate for systematic errors in linear optical satellite data acquisition using only the relative constraints between two overlapped images, namely, the corresponding elevation constraints and sparse GCPs. We first demonstrated the feasibility of GC with relative constraints and established an optimized GC model suitable for these relative constraints. We then presented a global iterative method to eliminate inaccuracies in internal calibration caused by the different distributions of GCPs within two images. The nadir (NAD) linear camera on board the Zi-Yuan 3 (ZY-3) satellite was used to evaluate the feasibility of the presented GC method; the results indicated that the present method effectively compensated for systematic errors. Thus, this article demonstrated the feasibility of GC without calibration sites. Numéro de notice : A2020-075 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2936891 Date de publication en ligne : 12/09/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2936891 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94607
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 436 - 446[article]Low-frequency desert noise intelligent suppression in seismic data based on multiscale geometric analysis convolutional neural network / Yuxing Zhao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
[article]
Titre : Low-frequency desert noise intelligent suppression in seismic data based on multiscale geometric analysis convolutional neural network Type de document : Article/Communication Auteurs : Yuxing Zhao, Auteur ; Yue Li, Auteur ; Baojun Yang, Auteur Année de publication : 2020 Article en page(s) : pp 650 - 665 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] algorithme de filtrage
[Termes IGN] analyse multiéchelle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] désert
[Termes IGN] enregistrement de données
[Termes IGN] filtrage du bruit
[Termes IGN] filtre passe-bande
[Termes IGN] interruption du signal
[Termes IGN] lutte contre le bruit
[Termes IGN] rapport signal sur bruit
[Termes IGN] reconstruction du signal
[Termes IGN] séismeRésumé : (auteur) Existing denoising algorithms often need to meet some premise assumptions and applicable conditions, such as the signal-to-noise ratio (SNR) cannot be too low, and the noise needs to obey a specific distribution (such as Gaussian distribution) and to satisfy some properties (such as stationarity). For the desert noise that shares the same frequency band with the effective signal and has complex characteristics (nonlinear, nonstationary, and non-Gaussian), it is difficult to find a universally applicable method. In response to this problem, a multiscale geometric analysis (MGA) convolutional neural network (CNN) is proposed in this article. One of the most important features of the CNN is that it can extract data-rich intrinsic information from the training set without relying on a priori assumption. By introducing the CNN into the MGA, a new kind of denoising method can be created, which can achieve good results even under a low SNR. This article takes the nonsubsampled contourlet transform as an example to create a denoising network named NC-CNN for high-efficiency and intelligent denoising of desert seismic data. The processing results of synthetic seismic records and field seismic records prove that NC-CNN can effectively suppress the low-frequency noise (random noise and surface wave), and the effective signal almost has no energy loss. In addition, the reconstruction ability of the missing signals is also an advantage of this method. Numéro de notice : A2020-076 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2938836 Date de publication en ligne : 24/09/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2938836 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94608
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 650 - 665[article]Identification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
[article]
Titre : Identification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data Type de document : Article/Communication Auteurs : Guo-Hui Yao, Auteur ; Chang-qing Ke, Auteur ; Xiaobing Zhou, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 691 - 703 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse multiéchelle
[Termes IGN] bande L
[Termes IGN] classification orientée objet
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données polarimétriques
[Termes IGN] échantillonnage
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat-OLI
[Termes IGN] image radar moirée
[Termes IGN] interferométrie différentielle
[Termes IGN] matrice de covariance
[Termes IGN] précision de la classification
[Termes IGN] segmentationRésumé : (auteur) To study the applicability of full polarimetric synthetic aperture radar (SAR) data to identify alpine glaciers in the central Himalayas, six polarimetric decomposition methods were used to obtain 20 polarimetric characteristic parameters based on the Advanced Land Observing Satellite 2 (ALOS-2) Phased Array type L-band SAR (PALSAR) data. Object-oriented multiscale segmentation was performed on a Landsat 8 Operational Land Imager (OLI) image prior to classification, and the vector boundaries of different types of training samples were selected from the segmented results. We performed a support vector machine (SVM)-based classification on the characteristic parameters from each polarimetric decomposition. All 20 parameters were then screened and combined according to different requirements: the degree of separability of different types of training samples and the type of scattering mechanisms. The results show that the classification accuracy of the incoherent decomposition characteristics based on the covariance matrix is the best, reaching 87%, and it can exceed 91% after adding the local incidence angle to the suite of classifiers. Eventually, more than 93% accuracy was achieved using a combination of multiple polarimetric parameters, which reduced the misclassification between bare ice and rock. We also analyzed the use of controlling factors on the accuracy of alpine glacier identification and found that the polarimetric information and aspect of the glacier surface are the most important factors. The former is the main basis for identification but the latter will confuse the feature distributions of different categories and cause misclassification. Numéro de notice : A2020-077 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2939430 Date de publication en ligne : 25/09/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2939430 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94613
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 691 - 703[article]