ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 161Paru le : 01/03/2020 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2020031 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2020033 | DEP-RECP | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2020032 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierHeuristic sample learning for complex urban scenes: Application to urban functional-zone mapping with VHR images and POI data / Xiuyuan Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Heuristic sample learning for complex urban scenes: Application to urban functional-zone mapping with VHR images and POI data Type de document : Article/Communication Auteurs : Xiuyuan Zhang, Auteur ; Shihong Du, Auteur ; Zhijia Zheng, Auteur Année de publication : 2020 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] échantillonnage d'image
[Termes IGN] image à très haute résolution
[Termes IGN] méthode heuristique
[Termes IGN] point d'intérêt
[Termes IGN] scène urbaineRésumé : (Auteur) Urban functional zones are basic units of urban planning and resource allocation, and contribute to a wide range of urban studies and investigations. Existing studies on functional-zone mapping with very-high-resolution (VHR) satellite images focused much on feature representations and classification techniques, but ignored zone sampling which however was fundamental to automatic zone classifications. Functional-zone sampling is much complicated and can hardly be resolved by classical sampling methods, as functional zones are complex urban scenes which consist of heterogeneous land covers and have highly abstract categories. To resolve the issue, this study presents a novel sampling paradigm, i.e., heuristic sample learning (HSL). It first proposes a sparse topic model to select representative functional zones, then uses deep forest to select confusing zones, and finally embraces Chinese restaurant process to label these selected zones. The presented method collects both representative and confusing zone samples and identifies their categories accurately, which makes the functional-zone classification process robust and the classification results accurate. Experiments conducted in Beijing indicate that HSL is effective and efficient for functional-zone sampling and classifications. Compared to traditional manual sampling, HSL reduces the time cost by 55% and improves the classification accuracy by 11.3% on average; furthermore, HSL can reduce the variation in sampling and classification results caused by different proficiency of operators. Accordingly, HSL significantly contributes to functional-zone mapping and plays an important role in urban studies. Numéro de notice : A2020-061 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.005 Date de publication en ligne : 13/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.005 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94577
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 1 - 12[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Efficient match pair selection for oblique UAV images based on adaptive vocabulary tree / San Jiang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Efficient match pair selection for oblique UAV images based on adaptive vocabulary tree Type de document : Article/Communication Auteurs : San Jiang, Auteur ; Wanshou Jiang, Auteur Année de publication : 2020 Article en page(s) : pp 61 - 75 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] analyse des correspondances
[Termes IGN] appariement d'images
[Termes IGN] image aérienne oblique
[Termes IGN] image captée par drone
[Termes IGN] photogrammétrie aérienne
[Termes IGN] seuillage d'image
[Termes IGN] structure-from-motionRésumé : (Auteur) The primary contribution of this paper is an efficient match pair selection method for oblique unmanned aerial vehicle (UAV) images. First, high overlap degrees and spatial resolutions cause image and feature redundancies in vocabulary tree building and image indexing. To cope with this issue, an image selection strategy and a feature selection strategy are designed to decrease the total number of features. Second, by analysing the distribution of the similarity scores, an adaptive threshold selection method is implemented to determine the number of candidate match pairs for each query image, and it avoids the disadvantages of the fixed number and fixed proportion methods. Then, an algorithm, termed AVT-Expansion, is proposed for the match pair selection and simplification where the initial match pairs are first selected by using the adaptive vocabulary tree (AVT). To simplify the initial match pairs, the AVT method is integrated with our previous MST-Expansion algorithm, which is used to extract a match graph by analysing the image topological connection network. Finally, the proposed method is verified using three UAV datasets captured with different oblique multi-camera systems. Experimental results demonstrate that the efficiency of the vocabulary tree building is improved, with speed-up ratios ranging from 14 to 16, and that high image retrieval precision values are obtained for the three datasets. For match pair selection of oblique UAV images, the proposed method is an efficient solution. Numéro de notice : A2020-062 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.013 Date de publication en ligne : 15/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.013 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94578
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 61 - 75[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis / Jiong Wang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Thermal unmixing based downscaling for fine resolution diurnal land surface temperature analysis Type de document : Article/Communication Auteurs : Jiong Wang, Auteur ; Olivier Schmitz, Auteur ; Meng Lu, Auteur ; Derek Karssenberg, Auteur Année de publication : 2020 Article en page(s) : pp 76 - 89 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] données spatiotemporelles
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] mise à l'échelle
[Termes IGN] Pays-Bas
[Termes IGN] radiance
[Termes IGN] réduction
[Termes IGN] température de surface
[Termes IGN] variation diurneRésumé : (Auteur) Due to the limitation in the availability of airborne imagery data that are high in both spatial and temporal resolution, land surface temperature (LST) dense in both space and time can only be obtained through downscaling of frequently acquired LST with coarse resolution. Many conventional downscaling techniques are only feasible in an ideal situation, where land surface factors as LST predictors are continuously available for downscaling the LST. These techniques are also applied only at large scales ignoring sub-regional variations. Based upon unmixing based approaches, this study presents an LST downscaling workflow, where only the coarse resolution of 1 km LST image at the prediction time is required. The conceptual backbone of the study is assuming that the LST patterns are governed by thermal behaviors of a fixed set of temperature sensitive land surface components. In operation, the study focuses on central Netherlands covering an area of 90 × 90 km. The MODIS and Landsat imagery acquired simultaneously are used as a coarse-fine resolution pair to derive downscaling mechanism which is then applied to coarse imagery at a time with missing fine resolution imagery. First, an optimal number of thermal components are extracted at fine resolution through the application of the non-negative matrix factorization (NMF). These components are assumed to possess unique temperature change patterns caused by combined effects of land cover change, radiance change, or both. Given the LST change and thermal components at coarse resolution, the LST change load of each component can then be obtained at the coarse resolution by solving a system of linear equations encoding thermal component-LST relationship. Such LST change load of thermal components is further unmixed to fine resolution and linearly weighted by the component distribution at fine resolution to obtain the fine resolution LST change. During the process, the coarse LST data is used directly without any resampling practice as shown in previous studies. Thus the technique is less time consuming even with a large downscaling factor of 30. The downscaled fine resolution LST represents an R-squared of over 0.7 outperforming classic downscaling techniques. The downscaled LST differentiates temperature over major land types and captures both seasonal and diurnal LST dynamics. Numéro de notice : A2020-063 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.014 Date de publication en ligne : 16/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.014 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94580
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 76 - 89[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Learning sequential slice representation with an attention-embedding network for 3D shape recognition and retrieval in MLS point clouds / Zhipeng Luo in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Learning sequential slice representation with an attention-embedding network for 3D shape recognition and retrieval in MLS point clouds Type de document : Article/Communication Auteurs : Zhipeng Luo, Auteur ; Di Liu, Auteur ; Jonathan Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 147 - 163 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] balayage laser
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] graphe
[Termes IGN] reconnaissance de formes
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau routier
[Termes IGN] semis de points
[Termes IGN] télémétrie laser mobileRésumé : (Auteur) The representation of 3D data is the key issue for shape analysis. However, most of the existing representations suffer from high computational cost and structure information loss. This paper presents a novel sequential slice representation with an attention-embedding network, named RSSNet, for 3D point cloud recognition and retrieval in road environments. RSSNet has two main branches. Firstly, a sequential slice module is designed to map disordered 3D point clouds to ordered sequence of shallow feature vectors. A gated recurrent unit (GRU) module is applied to encode the spatial and content information of these sequential vectors. The second branch consists of a key-point based graph convolution network (GCN) with an embedding attention strategy to fuse the sequential and global features to refine the structure discriminability. Three datasets were used to evaluate the proposed method, one acquired by our mobile laser scanning (MLS) system and two public datasets (KITTI and Sydney Urban Objects). Experimental results indicated that the proposed method achieved better performance than recognition and retrieval state-of-the-art methods. RSSNet provided recognition rates of 98.08%, 95.77% and 70.83% for the above three datasets, respectively. For the retrieval task, RSSNet obtained excellent mAP values of 95.56%, 87.16% and 69.99% on three datasets, respectively. Numéro de notice : A2020-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.003 Date de publication en ligne : 22/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.003 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94582
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 147 - 163[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Deep SAR-Net: learning objects from signals / Zhongling Huang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Deep SAR-Net: learning objects from signals Type de document : Article/Communication Auteurs : Zhongling Huang, Auteur ; Mihai Datcu, Auteur ; Zongxu Pan, Auteur ; Bin Lei, Auteur Année de publication : 2020 Article en page(s) : pp 179 - 193 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] image Terra
[Termes IGN] matrice de covariance
[Termes IGN] micro-onde
[Termes IGN] polarisation
[Termes IGN] temps-fréquenceRésumé : (Auteur) This paper introduces a novel Synthetic Aperture Radar (SAR) specific deep learning framework for complex-valued SAR images. The conventional deep convolutional neural networks based methods usually take the amplitude information of single-polarization SAR images as the input to learn hierarchical spatial features automatically, which may have difficulties in discriminating objects with similar texture but discriminative scattering patterns. Our novel deep learning framework, Deep SAR-Net, takes complex-valued SAR images into consideration to learn both spatial texture information and backscattering patterns of objects on the ground. On the one hand, we transfer the detected SAR images pre-trained layers to extract spatial features from intensity images. On the other hand, we dig into the Fourier domain to learn physical properties of the objects by joint time-frequency analysis on complex-valued SAR images. We evaluate the effectiveness of Deep SAR-Net on three complex-valued SAR datasets from Sentinel-1 and TerraSAR-X satellite and demonstrate how it works better than conventional deep CNNs, especially on man-made objects classes. The proposed datasets and the trained Deep SAR-Net model with all codes are provided. Numéro de notice : A2020-065 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.016 Date de publication en ligne : 23/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.016 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94583
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 179 - 193[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Object-based incremental registration of terrestrial point clouds in an urban environment / Xuming Ge in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Object-based incremental registration of terrestrial point clouds in an urban environment Type de document : Article/Communication Auteurs : Xuming Ge, Auteur ; Han Hu, Auteur Année de publication : 2020 Article en page(s) : pp 218 - 232 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] compensation par moindres carrés
[Termes IGN] conception orientée objet
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] primitive géométrique
[Termes IGN] scène urbaine
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestreRésumé : (Auteur) Registration of terrestrial point clouds is essential for large-scale urban applications. The robustness, accuracy, and runtime are generally given the highest priority in the design of appropriate algorithms. Most approaches that target general scenarios can only fulfill some of these factors, that is, robustness and accuracy come at the cost of increased runtime and vice versa. This paper proposes an object-based incremental registration strategy that accomplishes all of these objectives without the need for artificial targets, aiming at a specific scenario, the urban environment. The key is to decompose the degrees of freedom for the SE(3) transformation to three separate but closely related steps, considering that scanners are generally leveled in urban scenes: (1) 2D transformation with matches from line primitives, (2) vertical offset compensation by robust least-squares optimization, and (3) full SE(3) least-squares refinement using uniformly selected local patches. The robustness is prioritized in the whole pipeline, as structured first by a primitive-based registration and two least-squares optimizations with robust estimations that do not require specific keypoints. An object-based strategy for terrestrial point clouds is used to increase the reliability of the first step by the line primitives, which significantly reduces the search space without affecting the recall ratio. The least-squares optimization contributes to achieve a global optimum for the accurate registration. The three coupling steps are also more efficient than segregated coarse-to-fine registration. Experimental evaluations for point clouds acquired in both a metropolis and in old-style cities reveal that the proposed methods are superior to or on par with the state-of-the-art in robustness, accuracy, and runtime. In addition, the methods are also agnostic to the primitives adopted. Numéro de notice : A2020-066 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.020 Date de publication en ligne : 29/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.020 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94584
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 218 - 232[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt