Cartography and Geographic Information Science / Cartography and geographic information society . vol 47 n° 2Paru le : 01/02/2020 |
[n° ou bulletin]
est un bulletin de Cartography and Geographic Information Science / Cartography and geographic information society (1999 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierSemantic relatedness algorithm for keyword sets of geographic metadata / Zugang Chen in Cartography and Geographic Information Science, vol 47 n° 2 (February 2020)
[article]
Titre : Semantic relatedness algorithm for keyword sets of geographic metadata Type de document : Article/Communication Auteurs : Zugang Chen, Auteur ; Yaping Yang, Auteur Année de publication : 2020 Article en page(s) : pp 125 - 140 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] descripteur
[Termes IGN] Infrastructure de données
[Termes IGN] internet interactif
[Termes IGN] métadonnées géographiques
[Termes IGN] relation sémantique
[Termes IGN] similitude sémantique
[Termes IGN] système à base de connaissances
[Termes IGN] terminologie
[Termes IGN] thesaurusRésumé : (auteur) Advances in linked geospatial data, recommender systems, and geographic information retrieval have led to urgent necessity to assess the overall semantic relatedness between keyword sets of geographic metadata. In this study, a new model is proposed for computing the semantic relatedness between arbitrary two keyword sets of geographic metadata stored in current global spatial data infrastructures. In this model, the overall semantic relatedness is derived by pairing these keywords that are found to be most relevant to each other and averaging their relatedness. To find the most relevant keywords across two keyword sets precisely, the keywords in the keyword set of geographic metadata are divided into three kinds: the thesaurus elements, the WordNet elements, and the statistical elements. The thesaurus-lexical relatedness measure (TLRM), the extended thesaurus-lexical relatedness measure (ETLRM), and the Longest Common Substring method are proposed to compute the semantic relatedness between two thesaurus elements, two WordNet elements, a thesaurus element, and a WordNet element and two statistical elements, respectively. A human data set – the geographic-metadata’s keyword set relatedness dataset, which was used to evaluate the precision of the semantic relatedness measures of keyword sets of geographic metadata, was created. The proposed method was evaluated against the human-generated relatedness judgments and was compared with the Jaccard method and Vector Space Model. The results demonstrated that the proposed method achieved a high correlation with human judgments and outperformed the existing methods. Finally, the proposed method was applied to quantitatively linked geospatial data. Numéro de notice : A2020-057 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1647797 Date de publication en ligne : 20/09/2017 En ligne : https://doi.org/10.1080/15230406.2019.1647797 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94573
in Cartography and Geographic Information Science > vol 47 n° 2 (February 2020) . - pp 125 - 140[article]Micro-tasking as a method for human assessment and quality control in a geospatial data import / Atle Frenvik Sveen in Cartography and Geographic Information Science, vol 47 n° 2 (February 2020)
[article]
Titre : Micro-tasking as a method for human assessment and quality control in a geospatial data import Type de document : Article/Communication Auteurs : Atle Frenvik Sveen, Auteur ; Anne Sofie Strom Erichsen, Auteur ; Terje Midtbo, Auteur Année de publication : 2020 Article en page(s) : pp 141 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] algorithme de filtrage
[Termes IGN] chevauchement
[Termes IGN] contrôle qualité
[Termes IGN] données localisées
[Termes IGN] données localisées des bénévoles
[Termes IGN] évaluation des données
[Termes IGN] import de données
[Termes IGN] OpenStreetMap
[Termes IGN] précision des données
[Termes IGN] production participativeRésumé : (auteur) Crowd-sourced geospatial data can often be enriched by importing open governmental datasets as long as they are up-to date and of good quality. Unfortunately, merging datasets is not straight forward. In the context of geospatial data, spatial overlaps pose a particular problem, as existing data may be overwritten when a naïve, automated import strategy is employed. For example: OpenStreetMap has imported over 100 open geospatial datasets, but the requirement for human assessment makes this a time-consuming process which requires experienced volunteers or training. In this paper, we propose a hybrid import workflow that combines algorithmic filtering with human assessment using the micro-tasking method. This enables human assessment without the need for complex tools or prior experience. Using an online experiment, we investigated how import speed and accuracy is affected by volunteer experience and partitioning of the micro-task. We conclude that micro-tasking is a viable method for massive quality assessment that does not require volunteers to have prior experience working with geospatial data. Numéro de notice : A2020-058 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1659187 Date de publication en ligne : 16/09/2020 En ligne : https://doi.org/10.1080/15230406.2019.1659187 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94575
in Cartography and Geographic Information Science > vol 47 n° 2 (February 2020) . - pp 141 - 152[article]Data scale as cartography: a semi-automatic approach for thematic web map creation / Auriol Degbelo in Cartography and Geographic Information Science, vol 47 n° 2 (February 2020)
[article]
Titre : Data scale as cartography: a semi-automatic approach for thematic web map creation Type de document : Article/Communication Auteurs : Auriol Degbelo, Auteur ; Saad Sarfraz, Auteur ; Christian Kray, Auteur Année de publication : 2020 Article en page(s) : pp 153 - 170 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] accès aux données localisées
[Termes IGN] carte thématique
[Termes IGN] cartographie numérique
[Termes IGN] données ouvertes
[Termes IGN] échelle des données
[Termes IGN] géovisualisation
[Termes IGN] test statistique
[Termes IGN] web mappingRésumé : (auteur) Open government promises increased transparency by providing its citizens datasets about city processes. Open data portals have been emerging all over the world as mines of open geographic datasets. Thematic web maps are key to understanding these open geographic datasets. Current thematic web maps are created by programmers and/or cartographers, and thus are not designed to be easily reused with new geographic datasets. As a result, they pose several challenges to non-experts wanting to adapt them to new scenarios. This article introduces a semi-automatic approach for the creation of thematic web maps by and for users with no prior training in cartography. The approach relies on the mapping between Stevens’ data types and Bertin’s visual variables, to suggest (meaningful) thematic map visualizations for a given input geographic dataset. It was implemented as a web prototype in AngularJS and evaluated with 19 participants. Results from the user study suggest that despite facing a few challenges in accurately identifying Stevens’ data types, participants managed to successfully create web maps and correctly answer spatial questions. The prototype and insights gathered from the user study are relevant to making cartographic products more accessible to a broader population, and open geographic data more usable in the context of an open government. Numéro de notice : A2020-059 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1677176 Date de publication en ligne : 05/11/2019 En ligne : https://doi.org/10.1080/15230406.2019.1677176 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94576
in Cartography and Geographic Information Science > vol 47 n° 2 (February 2020) . - pp 153 - 170[article]