[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierDimension reduction methods applied to coastline extraction on hyperspectral imagery / Ozan Arslan in Geocarto international, vol 35 n° 4 ([15/03/2020])
[article]
Titre : Dimension reduction methods applied to coastline extraction on hyperspectral imagery Type de document : Article/Communication Auteurs : Ozan Arslan, Auteur ; özer Akyürek, Auteur ; Sinasi Kaya, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 376 - 390 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] Bosphore, détroit du
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] détection de contours
[Termes IGN] extraction
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] Istanbul (Turquie)
[Termes IGN] littoral
[Termes IGN] rapport signal sur bruit
[Termes IGN] réduction
[Termes IGN] télédétection
[Termes IGN] trait de côteRésumé : (auteur) In this study, dimensionality reduction (DR) methods on a hyperspectral dataset to explore the influence on the process of extraction of coastlines were examined and performance of different DR algorithms on the detection of coastline in Bosphorus, Istanbul was investigated. Among these methods, principal component (PC) analysis, maximum noise fraction and independent component (IC) analysis were used in the experiments with the aim of comparing. The study was carried out using these well-known DR techniques on a real hyperspectral image, an Hyperion data set with 161 bands, in the course of the experiments. Three different classifiers (i.e. ML, SVM and neural network) were used for the classification of dimensionally reduced and original images to detect coastline in the region. The DR results were evaluated quantitatively and visually in order to determine the reduced dimensions of the image subsets. Findings show that there is no significant influence of using DR methods on the dataset on the detection of coastline. Numéro de notice : A2020-099 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1520920 Date de publication en ligne : 22/10/2018 En ligne : https://doi.org/10.1080/10106049.2018.1520920 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94690
in Geocarto international > vol 35 n° 4 [15/03/2020] . - pp 376 - 390[article]Comparison of spatial modelling approaches to simulate urban growth: a case study on Udaipur city, India / Biswajit Mondal in Geocarto international, vol 35 n° 4 ([15/03/2020])
[article]
Titre : Comparison of spatial modelling approaches to simulate urban growth: a case study on Udaipur city, India Type de document : Article/Communication Auteurs : Biswajit Mondal, Auteur ; Suman Chakraborti, Auteur ; Dipendra Nath Das, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 411 - 433 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse diachronique
[Termes IGN] analyse multicritère
[Termes IGN] automate cellulaire
[Termes IGN] chaîne de Markov
[Termes IGN] croissance urbaine
[Termes IGN] étalement urbain
[Termes IGN] Inde
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatiale
[Termes IGN] pente
[Termes IGN] Perceptron multicouche
[Termes IGN] utilisation du solRésumé : (auteur) Assessment of past and future urban growth processes helps the decision makers to evaluate and formulate the policy documents. In an attempt to make such assessments, this study compares three commonly used urban growth models: Multicriteria Cellular Automata-Markov Chain (MCCA-MC), Multi-Layer Perception Markov Chain (MLP-MC), and the Slope, Land use, Exclusion, Urban Extent, Transportation and Hillshade (SLEUTH). This study has taken into account the land use and land cover data for the years, 1977, 1992, 2000, 2008, 2016 and prepared driving variables for urban growth. The KAPPA index of agreement indicates that the MCCA-MC, MLP-MC and SLEUTH models avoid errors by 94%, 93%, and 92% respectively. Models forecast that about 156.96 km2, 157.43 km2 and 142.43 km2 built-up areas will emerge through the process of urbanization by 2031 in the city of Udaipur. However, this assessment identified that all the models are embodied with their own advantages and disadvantages while serving specific purposes. While the MCCA-MC and MLP-MC provides a good account of the urban spread, the SLEUTH identifies the new isolated growth centres more accurately. Numéro de notice : A2020-100 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1520922 Date de publication en ligne : 03/01/2019 En ligne : https://doi.org/10.1080/10106049.2018.1520922 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94691
in Geocarto international > vol 35 n° 4 [15/03/2020] . - pp 411 - 433[article]Radar Vegetation Index for assessing cotton crop condition using RISAT-1 data / Dipanwita Haldar in Geocarto international, vol 35 n° 4 ([15/03/2020])
[article]
Titre : Radar Vegetation Index for assessing cotton crop condition using RISAT-1 data Type de document : Article/Communication Auteurs : Dipanwita Haldar, Auteur ; Viral Dave, Auteur ; Arundhati Misra, Auteur ; Bimal Bhattacharya, Auteur Année de publication : 2020 Article en page(s) : pp 364 - 375 Note générale : bibliography Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse
[Termes IGN] cultures
[Termes IGN] Gossypium (genre)
[Termes IGN] image Risat-1
[Termes IGN] Inde
[Termes IGN] indice de végétation
[Termes IGN] modèle de simulation
[Termes IGN] polarisation
[Termes IGN] stress hydrique
[Termes IGN] surveillance de la végétation
[Termes IGN] teneur en eau de la végétationRésumé : (auteur) Periodic crop condition monitoring is of prime importance in cotton belt of western India for water stress management. In this article, vegetation water content (VWC) is assessed using Radar Vegetation Index (RVI) derived from the RISAT-1 data during July to September, vegetative to first picking phase, for utilizing its potential for large area cotton condition assessment. The RVI estimation from dual-polarized data has been demonstrated for regional applications. Prediction models of VWC for cotton crop using RVI and in situ ground measurements depicts significant relationship, with R2 varying from 0.5 to 0.6 and RMSE of 0.3–0.7 kg m−2. High correlation exists between RVI with crop age and crop biomass with R2 varying from 0.55 to 0.7, this proves useful for sowing date prediction. The results showed good validation (R2 = 0.8) for operational applications. The estimated VWC was found with 30–35% error above 4 kg m−2 biomasses as compared to 20–25% in lower ranges. Numéro de notice : A2020-290 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1516249 Date de publication en ligne : 01/10/2018 En ligne : https://doi.org/10.1080/10106049.2018.1516249 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95118
in Geocarto international > vol 35 n° 4 [15/03/2020] . - pp 364 - 375[article]