Paru le : 01/03/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
079-2020031 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierIntegrated edge detection and terrain analysis for agricultural terrace delineation from remote sensing images / Wen Dai in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
[article]
Titre : Integrated edge detection and terrain analysis for agricultural terrace delineation from remote sensing images Type de document : Article/Communication Auteurs : Wen Dai, Auteur ; Jiaming Na, Auteur ; Nan Huang, Auteur Année de publication : 2020 Article en page(s) : pp 484 - 503 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse des risques
[Termes IGN] cartographie automatique
[Termes IGN] Chine
[Termes IGN] délimitation
[Termes IGN] détection de contours
[Termes IGN] effet d'ombre
[Termes IGN] érosion
[Termes IGN] Google Earth
[Termes IGN] humidité du sol
[Termes IGN] image satellite
[Termes IGN] image Worldview
[Termes IGN] méthode robuste
[Termes IGN] MNS ASTER
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrain
[Termes IGN] production agricole
[Termes IGN] superposition d'images
[Termes IGN] terrasseRésumé : (auteur) Agricultural terraces are important for agricultural production and soil-and-water conservation. They comprise treads and risers that require manual construction and maintenance. If managed improperly, risers will collapse, causing soil loss, gully erosion, and cultivation threats. However, mapping terrace risers remains a challenge. This study presents a novel approach to automatically map terrace risers by combining remote sensing images and digital elevation models (DEMs). First, a terraced hillslope was extracted via a hill-shading method and edges in the image were detected using a Canny edge detector. Next, the DEM was used to generate the contour direction, and edges along this direction were searched and coded as candidate terrace risers via directional detection. Finally, the results of directional detection and the edge image obtained from the Canny detector were overlaid to backtrack complete terrace risers. The approach was validated using four study areas with different topographic characteristics in the Loess Plateau, China. The results verify that the approach achieves outstanding performance and robustness in mapping terrace risers. The precision, recall, and F-measure were 90.81%–97.57%, 88.53%–94.10%, and 90.13%–95.80%, respectively. This approach is flexible and applicable with freely available images and DEM sources. Numéro de notice : A2020-105 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1650363 Date de publication en ligne : 22/08/2019 En ligne : https://doi.org/10.1080/13658816.2019.1650363 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94701
in International journal of geographical information science IJGIS > vol 34 n° 3 (March 2020) . - pp 484 - 503[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020031 RAB Revue Centre de documentation En réserve L003 Disponible A deep learning architecture for semantic address matching / Yue Lin in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
[article]
Titre : A deep learning architecture for semantic address matching Type de document : Article/Communication Auteurs : Yue Lin, Auteur ; Mengjun Kang, Auteur ; Yuyang Wu, Auteur Année de publication : 2020 Article en page(s) : pp 559 - 576 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement d'adresses
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] géocodage par adresse postale
[Termes IGN] gestion urbaine
[Termes IGN] inférence sémantique
[Termes IGN] représentation vectorielle
[Termes IGN] réseau neuronal profond
[Termes IGN] Shenzhen
[Termes IGN] similitude sémantique
[Termes IGN] traitement du langage naturelRésumé : (auteur) Address matching is a crucial step in geocoding, which plays an important role in urban planning and management. To date, the unprecedented development of location-based services has generated a large amount of unstructured address data. Traditional address matching methods mainly focus on the literal similarity of address records and are therefore not applicable to the unstructured address data. In this study, we introduce an address matching method based on deep learning to identify the semantic similarity between address records. First, we train the word2vec model to transform the address records into their corresponding vector representations. Next, we apply the enhanced sequential inference model (ESIM), a deep text-matching model, to make local and global inferences to determine if two addresses match. To evaluate the accuracy of the proposed method, we fine-tune the model with real-world address data from the Shenzhen Address Database and compare the outputs with those of several popular address matching methods. The results indicate that the proposed method achieves a higher matching accuracy for unstructured address records, with its precision, recall, and F1 score (i.e., the harmonic mean of precision and recall) reaching 0.97 on the test set. Numéro de notice : A2020-106 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1681431 Date de publication en ligne : 24/10/2019 En ligne : https://doi.org/10.1080/13658816.2019.1681431 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94702
in International journal of geographical information science IJGIS > vol 34 n° 3 (March 2020) . - pp 559 - 576[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020031 RAB Revue Centre de documentation En réserve L003 Disponible A comprehensive framework for studying diffusion patterns of imported dengue with individual-based movement data / Haiyan Tao in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
[article]
Titre : A comprehensive framework for studying diffusion patterns of imported dengue with individual-based movement data Type de document : Article/Communication Auteurs : Haiyan Tao, Auteur ; Keli Wang, Auteur ; Li Zhuo, Auteur Année de publication : 2020 Article en page(s) : pp 604 - 624 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Chine
[Termes IGN] diffusion spatiale
[Termes IGN] distribution de Poisson
[Termes IGN] données socio-économiques
[Termes IGN] hétérogénéité environnementale
[Termes IGN] hétérogénéité spatiale
[Termes IGN] maladie infectieuse
[Termes IGN] migration humaine
[Termes IGN] mobilité territoriale
[Termes IGN] modèle de régression
[Termes IGN] modèle mathématique
[Termes IGN] origine - destination
[Termes IGN] point d'intérêt
[Termes IGN] risque sanitaire
[Termes IGN] urbanisationRésumé : (auteur) International communication and global cooperation have greatly accelerated the worldwide spread of dengue fever, increasing the impact of imported cases on dengue outbreaks in non-naturally endemic areas. Existing studies mostly focus on describing the quantitative relationship between imported cases and local transmission but ignore the space-time diffusion mode of imported cases under the influence of individual mobility. In this paper, we propose a comprehensive framework at a fine scale to establish the disease transmission network and a mathematical model, which constructs ‘source-sink’ links between the imported and indigenous cases on a regular grid with a spatial resolution of 1 km to explore the diffusion pattern and spatiotemporal heterogeneity of imported cases. An application to Guangzhou, China, reveals the main flow and transmission path of imported cases under the influence of human movement and identifies the spatiotemporal distribution of transmission speed according to the time lag of each source-sink link. In addition, we demonstrate that using individual-based movement data and socio-economic factors to study human mobility and imported cases can help to understand the driving forces of dengue spread. Our research provides a comprehensive framework for the analysis of early dengue transmission patterns with benefits to similar urban applications. Numéro de notice : A2020-107 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1684497 Date de publication en ligne : 18/11/2019 En ligne : https://doi.org/10.1080/13658816.2019.1684497 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94707
in International journal of geographical information science IJGIS > vol 34 n° 3 (March 2020) . - pp 604 - 624[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020031 RAB Revue Centre de documentation En réserve L003 Disponible