ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 162Paru le : 01/04/2020 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierDirectionally constrained fully convolutional neural network for airborne LiDAR point cloud classification / Congcong Wen in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
[article]
Titre : Directionally constrained fully convolutional neural network for airborne LiDAR point cloud classification Type de document : Article/Communication Auteurs : Congcong Wen, Auteur ; Lina Yang, Auteur ; Xiang Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 50 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] fusion de données
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] précision de la classification
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] traitement de semis de pointsRésumé : (auteur) Point cloud classification plays an important role in a wide range of airborne light detection and ranging (LiDAR) applications, such as topographic mapping, forest monitoring, power line detection, and road detection. However, due to the sensor noise, high redundancy, incompleteness, and complexity of airborne LiDAR systems, point cloud classification is challenging. Traditional point cloud classification methods mostly focus on the development of handcrafted point geometry features and employ machine learning-based classification models to conduct point classification. In recent years, the advances of deep learning models have caused researchers to shift their focus towards machine learning-based models, specifically deep neural networks, to classify airborne LiDAR point clouds. These learning-based methods start by transforming the unstructured 3D point sets to regular 2D representations, such as collections of feature images, and then employ a 2D CNN for point classification. Moreover, these methods usually need to calculate additional local geometry features, such as planarity, sphericity and roughness, to make use of the local structural information in the original 3D space. Nonetheless, the 3D to 2D conversion results in information loss. In this paper, we propose a directionally constrained fully convolutional neural network (D-FCN) that can take the original 3D coordinates and LiDAR intensity as input; thus, it can directly apply to unstructured 3D point clouds for semantic labeling. Specifically, we first introduce a novel directionally constrained point convolution (D-Conv) module to extract locally representative features of 3D point sets from the projected 2D receptive fields. To make full use of the orientation information of neighborhood points, the proposed D-Conv module performs convolution in an orientation-aware manner by using a directionally constrained nearest neighborhood search. Then, we design a multiscale fully convolutional neural network with downsampling and upsampling blocks to enable multiscale point feature learning. The proposed D-FCN model can therefore process input point cloud with arbitrary sizes and directly predict the semantic labels for all the input points in an end-to-end manner. Without involving additional geometry features as input, the proposed method demonstrates superior performance on the International Society for Photogrammetry and Remote Sensing (ISPRS) 3D labeling benchmark dataset. The results show that our model achieves a new state-of-the-art performance on powerline, car, and facade categories. Moreover, to demonstrate the generalization abilities of the proposed method, we conduct further experiments on the 2019 Data Fusion Contest Dataset. Our proposed method achieves superior performance than the comparing methods and accomplishes an overall accuracy of 95.6% and an average F1 score of 0.810. Numéro de notice : A2020-119 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.004 Date de publication en ligne : 18/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94743
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 50 - 62[article]Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis / T. Poblete in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
[article]
Titre : Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis Type de document : Article/Communication Auteurs : T. Poblete, Auteur ; C. Camino, Auteur ; P.S.A. Beck, Auteur Année de publication : 2020 Article en page(s) : pp 27 - 40 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] chlorophylle
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] espèce végétale
[Termes IGN] fluorescence
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] image satellite
[Termes IGN] image thermique
[Termes IGN] Italie
[Termes IGN] maladie bactérienne
[Termes IGN] maladie phytosanitaire
[Termes IGN] Olea europaea
[Termes IGN] stress hydrique
[Termes IGN] surveillance de la végétation
[Termes IGN] télédétection aérienne
[Termes IGN] traitement d'imageRésumé : (auteur) Xylella fastidiosa (Xf) is a harmful plant pathogenic bacterium, able to infect over 500 plant species worldwide. Successful eradication and containment strategies for harmful pathogens require large-scale monitoring techniques for the detection of infected hosts, even when they do not display visual symptoms. Although a previous study using airborne hyperspectral and thermal imagery has shown promising results for the early detection of Xf-infected olive (Olea europaea) trees, further work is needed when adopting these techniques for large scale monitoring using multispectral cameras on board airborne platforms and satellites. We used hyperspectral and thermal imagery collected during a two-year airborne campaign in a Xf-infected area in southern Italy to assess the performance of spectrally constrained machine-learning algorithms for this task. The algorithms were used to assess multispectral bandsets, selected from the original hyperspectral imagery, that were compatible with large-scale monitoring from unmanned platforms and manned aircraft. In addition, the contribution of solar–induced chlorophyll fluorescence (SIF) and the temperature-based Crop Water Stress Index (CWSI) retrieved from hyperspectral and thermal imaging, respectively, were evaluated to quantify their relative importance in the algorithms used to detect Xf infection. The detection performance using support vector machine algorithms decreased from ∼80% (kappa, κ = 0.42) when using the original full hyperspectral dataset including SIF and CWSI to ∼74% (κ = 0.36) when the optimal set of six spectral bands most sensitive to Xf infection were used in addition to the CWSI thermal indicator. When neither SIF nor CWSI were used, the detection yielded less than 70% accuracy (decreasing κ to very low performance, 0.29), revealing that tree temperature was more important than chlorophyll fluorescence for the Xf detection. This work demonstrates that large-scale Xf monitoring can be supported using airborne platforms carrying multispectral and thermal cameras with a limited number of spectral bands (e.g., six to 12 bands with 10 nm bandwidths) as long as they are carefully selected by their sensitivity to the Xf symptoms. More precisely, the blue (bands between 400 and 450 nm to derive the NPQI index) and thermal (to derive CWSI from tree temperature) were the most critical spectral regions for their sensitivity to Xf symptoms in olive. Numéro de notice : A2020-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.010 Date de publication en ligne : 18/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.010 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94745
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 27 - 40[article]Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database / Collin Homer in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
[article]
Titre : Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database Type de document : Article/Communication Auteurs : Collin Homer, Auteur ; Jon Dewitz, Auteur ; Suming Jin, Auteur Année de publication : 2020 Article en page(s) : pp 184 - 199 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] base de données d'occupation du sol
[Termes IGN] changement climatique
[Termes IGN] changement d'occupation du sol
[Termes IGN] cultures
[Termes IGN] détection de changement
[Termes IGN] Etats-Unis
[Termes IGN] forêt
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Envisat-MERIS
[Termes IGN] image Landsat-OLI
[Termes IGN] image NOAA-AVHRR
[Termes IGN] image Terra-MODIS
[Termes IGN] surveillance de la végétation
[Termes IGN] zone humideRésumé : (auteur) The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km2, however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001–2006 at twice the rate of 2011–2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database. Numéro de notice : A2020-121 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.019 Date de publication en ligne : 03/03/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.019 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94746
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 184 - 199[article]Geocoding of trees from street addresses and street-level images / Daniel Laumer in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
[article]
Titre : Geocoding of trees from street addresses and street-level images Type de document : Article/Communication Auteurs : Daniel Laumer, Auteur ; Nico Lang, Auteur ; Natalie Van Doorn, Auteur Année de publication : 2020 Article en page(s) : pp 125 - 136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse des correspondances
[Termes IGN] apprentissage profond
[Termes IGN] arbre urbain
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'arbres
[Termes IGN] détection d'objet
[Termes IGN] géocodage par adresse postale
[Termes IGN] image panoramique
[Termes IGN] image Streetview
[Termes IGN] inventaire
[Termes IGN] service écosystémique
[Termes IGN] zone urbaineRésumé : (auteur) We introduce an approach for updating older tree inventories with geographic coordinates using street-level panorama images and a global optimization framework for tree instance matching. Geolocations of trees in inventories until the early 2000s where recorded using street addresses whereas newer inventories use GPS. Our method retrofits older inventories with geographic coordinates to allow connecting them with newer inventories to facilitate long-term studies on tree mortality etc. What makes this problem challenging is the different number of trees per street address, the heterogeneous appearance of different tree instances in the images, ambiguous tree positions if viewed from multiple images and occlusions. To solve this assignment problem, we (i) detect trees in Google street-view panoramas using deep learning, (ii) combine multi-view detections per tree into a single representation, (iii) and match detected trees with given trees per street address with a global optimization approach. Experiments for trees in 5 cities in California, USA, show that we are able to assign geographic coordinates to 38% of the street trees, which is a good starting point for long-term studies on the ecosystem services value of street trees at large scale. Numéro de notice : A2020-124 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.001 Date de publication en ligne : 21/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.001 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94749
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 125 - 136[article]Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging / Bo Li in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
[article]
Titre : Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging Type de document : Article/Communication Auteurs : Bo Li, Auteur ; Xiangming Xu, Auteur ; Li Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 161 -1 72 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] couvert végétal
[Termes IGN] hauteur de la végétation
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] image RVB
[Termes IGN] indice de végétation
[Termes IGN] pomme de terre
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] rendement agricoleRésumé : (auteur) Rapid and accurate biomass and yield estimation facilitates efficient plant phenotyping and site-specific crop management. A low altitude unmanned aerial vehicle (UAV) was used to acquire RGB and hyperspectral imaging data for a potato crop canopy at two growth stages to estimate the above-ground biomass and predict crop yield. Field experiments included six cultivars and multiple treatments of nitrogen, potassium, and mixed compound fertilisers. Crop height was estimated using the difference between digital surface model and digital elevation models derived from RGB imagery. Combining with two narrow-band vegetation indices selected by the RReliefF feature selection algorithm. Random Forest regression models demonstrated high prediction accuracy for both fresh and dry above-ground biomass, with a coefficient of determination (r2) > 0.90. Crop yield was predicted using four narrow-band vegetation indices and crop height (r2 = 0.63) with imagery data obtained 90 days after planting. A Partial Least Squares regression model based on the full wavelength spectra demonstrated improved yield prediction (r2 = 0.81). This study demonstrated the merits of UAV-based RGB and hyperspectral imaging for estimating the above-ground biomass and yield of potato crops, which can be used to assist in site-specific crop management. Numéro de notice : A2020-125 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.013 Date de publication en ligne : 28/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.013 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94750
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 161 -1 72[article]