IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 58 n° 3Paru le : 01/03/2020 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierAssessing the shape accuracy of coarse resolution burned area identifications / Michael L. Humber in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Assessing the shape accuracy of coarse resolution burned area identifications Type de document : Article/Communication Auteurs : Michael L. Humber, Auteur ; Luigi Boschetti, Auteur ; Louis Giglio, Auteur Année de publication : 2020 Article en page(s) : pp 1516 - 1526 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aménagement paysager
[Termes IGN] appariement de formes
[Termes IGN] chevauchement
[Termes IGN] classification pixellaire
[Termes IGN] écologie
[Termes IGN] estimation de précision
[Termes IGN] Etats-Unis
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Terra-MODIS
[Termes IGN] incendie de forêt
[Termes IGN] précision cartographique
[Termes IGN] surveillance forestière
[Termes IGN] zone sinistréeRésumé : (Auteur) Accuracy assessment of burned area maps has been traditionally performed using pixel-based metrics, with the objective of assessing the accuracy and precision of burned area estimates at local and regional scales. While these assessments are helpful for obtaining consistent estimates of the burned area across many fires and over large areas, pixel-based approaches do not necessarily characterize how well individual fires are mapped. At the individual fire scale, other factors like the shape of the fire have significance regarding ecology, fire succession, and landscape management and determining other fire properties such as the spread rate. We propose a method for evaluating wildfire classification maps, which retains the spatially explicit properties of the burn scar. Our method quantifies the edge error (EE) of burned area classifications and reference maps by calculating the average geometric normal of the evaluated burned area boundary along the burn edge and the two nearest neighbor samples from the reference burn boundary. The metric is a physically meaningful quantification of the EE, which represents the average distance between the boundaries of the reference and evaluated burn scars. The methods are demonstrated by comparing MODIS Burned Area (MCD64A1) maps to Monitoring Trends in Burn Severity (MTBS) maps for 173 total wildfires in the United States. The results indicate that when accounting for the minimum achievable EE (MAEE) due to differing spatial resolutions, the mean EE is less than two MODIS pixels and the magnitude of the errors does not appear to be related to fire size. Numéro de notice : A2020-085 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2943901 Date de publication en ligne : 13/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2943901 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94659
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1516 - 1526[article]A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data / Qingwang Wang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data Type de document : Article/Communication Auteurs : Qingwang Wang, Auteur ; Yanfeng Gu, Auteur Année de publication : 2020 Article en page(s) : pp 1568 -1586 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Amérique du nord
[Termes IGN] analyse discriminante
[Termes IGN] calcul tensoriel
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification multibande
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] état de l'art
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image multibande
[Termes IGN] modèle géométrique
[Termes IGN] semis de points
[Termes IGN] tenseur
[Termes IGN] vectorisation
[Termes IGN] voisinage (relation topologique)Résumé : (Auteur) Multispectral light detection and ranging (MS-LiDAR) systems open the door to the possibility in the 3-D land cover classification at a finer scale using only point cloud data. This article proposes a model based on the tensor representation for multispectral point cloud classification. The proposed method combines the 3-D local spatial structure of each multispectral point by characterizing the point with a second-order tensor. The first mode of the tensor indicates the spatial location and spectral information of each point (i.e., the row of the second-order tensor) and the second mode denotes the neighborhood geometric and spectral structures (i.e., the column of the second-order tensor). Then we develop a novel tensor manifold discriminant embedding (TMDE) algorithm to extract the geometric–spectral features for multispectral point clouds classification. TMDE solves the mapping matrices of each mode by preserving the intraclass samples’ distribution further making it more compact and maximizing the distance of different classes. Finally, the support vector machine classifier with the extracted features as input is used to implement the classification of multispectral point clouds. Experiments are conducted on two real multispectral point cloud data sets. The experimental results demonstrate that the proposed method can achieve significant improvements in classification accuracies in comparison with several state-of-the-art algorithms. Numéro de notice : A2020-086 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947081 Date de publication en ligne : 30/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947081 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94660
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1568 -1586[article]Poststack seismic data denoising based on 3-D convolutional neural network / Dawei Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Poststack seismic data denoising based on 3-D convolutional neural network Type de document : Article/Communication Auteurs : Dawei Liu, Auteur ; Dawei Liu, Auteur ; Xiaokai Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1598 - 1629 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] bruit blanc
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées 3D
[Termes IGN] échantillonnage
[Termes IGN] filtrage du bruit
[Termes IGN] filtre de Gauss
[Termes IGN] post-stratification de données
[Termes IGN] séisme
[Termes IGN] sismologieRésumé : (Auteur) Deep learning has been successfully applied to image denoising. In this study, we take one step forward by using deep learning to suppress random noise in poststack seismic data from the aspects of network architecture and training samples. On the one hand, poststack seismic data denoising mainly aims at 3-D seismic data. We designed an end-to-end 3-D denoising convolutional neural network (3-D-DnCNN) that takes raw 3-D cubes as input in order to better extract the features of the 3-D spatial structure of poststack seismic data. On the other hand, denoising images with deep learning require noisy–clean sample pairs for training. In the field of seismic data processing, researchers usually try their best to suppress noise by using complex processes that combine different methods, but clean labels of seismic data are not available. In addition, building training samples in field seismic data has become an interesting but challenging problem. Therefore, we propose a training sample selection method that contains a complex workflow to produce comparatively ideal training samples. Experiments in this study demonstrate that deep learning can directly learn the ability to denoise field seismic data from selected samples. Although the building of the training samples may occur through a complex process, the experimental results of synthetic seismic data and field seismic data show that the 3-D-DnCNN has learned the ability to suppress the Gaussian noise and super-Gaussian noise from different training samples. Moreover, the 3-D-DnCNN network has better denoising performance toward arc-like imaging noise. In addition, we adopt residual learning and batch normalization in order to accelerate the training speed. After network training is satisfactorily completed, its processing efficiency can be significantly higher than that of conventional denoising methods. Numéro de notice : A2020-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947149 Date de publication en ligne : 06/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947149 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94661
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1598 - 1629[article]Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection / Da He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection Type de document : Article/Communication Auteurs : Da He, Auteur ; Yanfei Zhong, Auteur ; Liangpei Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 1696 - 1717 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification du maximum a posteriori
[Termes IGN] détection de changement
[Termes IGN] distribution spatiale
[Termes IGN] données spatiotemporelles
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Quickbird
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle dynamique
[Termes IGN] optimisation spatiale
[Termes IGN] précision infrapixellaire
[Termes IGN] série temporelle
[Termes IGN] urbanisation
[Termes IGN] Wuhan (Chine)
[Termes IGN] zone urbaineRésumé : (Auteur) The maximum a posteriori (MAP) estimation model-based sub-pixel mapping (SPM) method is an alternative way to solve the ill-posed SPM problem. The MAP estimation model has been proven to be an effective SPM approach and has been extensively developed over the past few years, as a result of its effective regularization capability that comes from the spatial regularization model. However, various spatial regularization models do not always truly reflect the detailed spatial distribution in a real situation, and the over-smoothing effect of the spatial regularization model always tends to efface the detailed structural information. In this article, under the scenario of time-series observation by remote sensing imagery, the joint spectral–spatial–temporal MAP-based (SST_MAP) model for SPM is proposed. In SST_MAP, a newly developed temporal regularization model is added to the MAP model, based on the prerequisite for a temporally close fine image covering the same study region. This available fine image can provide the specific spatial structures most closely conforming to the ground truth for a more precise constraint, thereby reducing the over-smoothing effect. Furthermore, the three dimensions are mutually balanced and mutually constrained, to reach an equilibrium point and achieve restoration of both smooth areas for the homogeneous land-cover classes and a detailed structure for the heterogeneous land-cover classes. Four experiments were designed to validate the proposed SST_MAP: three synthetic-image experiments and one real-image experiment. The restoration results confirm the superiority of the proposed SST_MAP model. Notably, under the background of time-series observation, SST_MAP provides an alternative way of land-cover change detection (LCCD), achieving both detailed spatial-scale and high-frequency temporal LCCD observation for the study case of urbanization analysis within the city of Wuhan in China. Numéro de notice : A2020-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947708 Date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947708 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94662
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1696 - 1717[article]Simultaneous intensity bias estimation and stripe noise removal in infrared images using the global and local sparsity constraints / Li Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Simultaneous intensity bias estimation and stripe noise removal in infrared images using the global and local sparsity constraints Type de document : Article/Communication Auteurs : Li Liu, Auteur ; Luping Xu, Auteur ; Houzhang Fang, Auteur Année de publication : 2020 Article en page(s) : pp 1777 - 1789 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse bivariée
[Termes IGN] analyse comparative
[Termes IGN] filtrage du bruit
[Termes IGN] image infrarouge
[Termes IGN] intensité lumineuse
[Termes IGN] interpolation polynomiale
[Termes IGN] itération
[Termes IGN] optimisation (mathématiques)
[Termes IGN] programmation par contraintes
[Termes IGN] texture d'imageRésumé : (Auteur) Infrared (IR) images are often contaminated by obvious intensity bias and stripes, which severely affect the visual quality and subsequent applications. It is challenging to eliminate simultaneously the mixed nonuniformity noise without blurring the fine-image details in low-textured IR images. In this article, we present a new model for simultaneous intensity bias correction and destriping through introducing two sparsity constraints. One is that model fit on the intensity bias should be as accurate as possible. A bivariate polynomial model is built to characterize the global smoothness of the intensity bias. The other constraint is that the unidirectional variational sparse model can concisely represent the direction characteristic of stripe noise. A computationally efficient numerical algorithm based on split Bregman iteration is used to solve the complex optimization problem. The proposed method is fundamentally different from the existing denoising techniques and simultaneously estimates the sharp image, intensity bias, and stripe components. Significant improvement on image quality is achieved on both simulated and real studies. Both qualitative and quantitative comparisons with the state-of-the-art correction methods demonstrate its superiority. Numéro de notice : A2020-089 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2948601 Date de publication en ligne : 18/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2948601 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94663
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1777 - 1789[article]Improving operational radar rainfall estimates using profiler observations over complex terrain in Northern California / Haonan Chen in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Improving operational radar rainfall estimates using profiler observations over complex terrain in Northern California Type de document : Article/Communication Auteurs : Haonan Chen, Auteur ; Robert Cifelli, Auteur ; Allen White, Auteur Année de publication : 2020 Article en page(s) : pp 1821 - 1832 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] correction d'image
[Termes IGN] données radar
[Termes IGN] erreur d'approximation
[Termes IGN] faisceau
[Termes IGN] montagne
[Termes IGN] orographie
[Termes IGN] précipitation
[Termes IGN] prévision météorologique
[Termes IGN] télédétection en hyperfréquence
[Termes IGN] télédétection réflective
[Termes IGN] visée verticaleRésumé : (Auteur) Quantitative precipitation estimation (QPE) using operational weather radars in the western United States is still a challenging issue due to the beam blockage in the mountainous areas and complex rainfall microphysics induced by the orographic enhancement. This article aims to improve operational radar rainfall estimates in complex terrain by incorporating auxiliary remote sensing observations. An innovative vertical profile of reflectivity (VPR) correction scheme is developed for operational radar using observations from multiple vertically pointing profilers to represent the vertical structure of precipitation at various locations. A demonstration study in the Russian River basin in Northern California is detailed. Results show that the QPE performance is significantly improved after VPR correction, and this new VPR correction approach is superior to the conventional approach currently applied in the operational radar rainfall system. The normalized standard error of hourly rainfall estimates for the two precipitation events presented in this article is improved by ~20% after applying the proposed VPR correction scheme. Numéro de notice : A2020-090 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2949214 Date de publication en ligne : 12/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2949214 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94664
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1821 - 1832[article]A sequential Monte Carlo framework for noise filtering in InSAR time series / Mehdi Khaki in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : A sequential Monte Carlo framework for noise filtering in InSAR time series Type de document : Article/Communication Auteurs : Mehdi Khaki, Auteur ; Mick S. Filmer, Auteur ; Will E. Featherstone, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1904 - 1912 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] filtrage du bruit
[Termes IGN] filtrage spatiotemporel
[Termes IGN] filtre adaptatif
[Termes IGN] filtre de Kalman
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle mathématique
[Termes IGN] série temporelleRésumé : (Auteur) This article proposes an alternative filtering technique to improve interferometric synthetic aperture radar (InSAR) time series by reducing residual noise while retaining the ground deformation signal. To this end, for the first time, a data-driven approach is introduced, which is based on Takens’s method within the sequential Monte Carlo framework, allowing for a model-free approach to filter noisy data. Both a Kalman-based filter and a particle filter (PF) are applied within this framework to investigate their impact on retrieving the signals. More specifically, PF and particle smoother [PaSm; to avoid confusion with persistent scatterers (PSs)] are tested for their ability to deal with non-Gaussian noise. A synthetic test based on simulated InSAR time series, as well as a real test, is designed to investigate the capability of the proposed approach compared with the spatiotemporal filtering of InSAR time series. Results indicate that PFs and more specifically PaSm perform better than other applied methods, as indicated by reduced errors in both tests. Two other variants of PF and adaptive unscented Kalman filter (AUKF) are presented and are found to be able to perform similar to PaSm but with reduced computation time. This article suggests that PFs tested here could be applied in InSAR processing chains. Numéro de notice : A2020-091 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950353 Date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950353 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94665
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1904 - 1912[article]Estimation of variance and spatial correlation width for fine-scale measurement error in digital elevation model / Mikhail L. Uss in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Estimation of variance and spatial correlation width for fine-scale measurement error in digital elevation model Type de document : Article/Communication Auteurs : Mikhail L. Uss, Auteur ; Benoit Vozel, Auteur ; Vladimir V. Lukin, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1941 - 1956 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] Advanced Spaceborne Thermal Emission and Reflection Radiometer
[Termes IGN] analyse multivariée
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] courbe épipolaire
[Termes IGN] erreur de mesure
[Termes IGN] image ALOS
[Termes IGN] image TanDEM-X
[Termes IGN] modèle d'erreur
[Termes IGN] modèle numérique de surface
[Termes IGN] mouvement brownien
[Termes IGN] varianceRésumé : (Auteur) In this article, we borrow from the blind noise parameter estimation (BNPE) methodology early developed in the image processing field an original and innovative no-reference approach to estimate digital elevation model (DEM) vertical error parameters without resorting to a reference DEM. The challenges associated with the proposed approach related to the physical nature of the error and its multifactor structure in DEM are discussed in detail. A suitable multivariate method is then developed for estimating the error in gridded DEM. It is built on a recently proposed vectorial BNPE method for estimating spatially correlated noise using noise informative areas and fractal Brownian motion. The new multivariate method is derived to estimate the effect of the stacking procedure and that of the epipolar line error on local (fine-scale) standard deviation and autocorrelation function width of photogrammetric DEM measurement error. Applying the new estimator to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM2 and Advanced Land Observing Satellite (ALOS) World 3D DEMs, good agreement of derived estimates with results available in the literature is evidenced. Adopted for TanDEM-X-DEM, estimates obtained agree well with the values provided in the height error map. In future works, the proposed no-reference method for analyzing DEM error can be extended to a larger number of predictors for accounting for other factors influencing remote sensing (RS) DEM accuracy. Numéro de notice : A2020-092 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2951178 Date de publication en ligne : 28/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2951178 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94666
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1941 - 1956[article]Bayesian inversion of convolved hidden Markov models with applications in reservoir prediction / Torstein Fjeldstad in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Bayesian inversion of convolved hidden Markov models with applications in reservoir prediction Type de document : Article/Communication Auteurs : Torstein Fjeldstad, Auteur ; Henning Omre, Auteur Année de publication : 2020 Article en page(s) : pp 1957 - 1968 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] amplitude
[Termes IGN] analyse mathématique
[Termes IGN] approximation
[Termes IGN] chaîne de Markov
[Termes IGN] filtrage numérique d'image
[Termes IGN] lithologie
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modèle d'inversion
[Termes IGN] modèle mathématique
[Termes IGN] processus gaussien
[Termes IGN] sismicitéRésumé : (Auteur) The efficient assessment of convolved hidden Markov models is discussed. The bottom layer is defined as an unobservable categorical first-order Markov chain, whereas the middle layer is assumed to be a Gaussian spatial variable conditional on the bottom layer. Hence, this layer appears marginally as a Gaussian mixture spatial variable. We observe the top layer as a convolution of the middle layer with Gaussian errors. The focus is on assessing the categorical and Gaussian mixture variables given the observations, and we operate in a Bayesian inversion framework. The model is defined to perform the inversion of subsurface seismic amplitude-versus-offset data into lithology/fluid classes and to assess the associated seismic material properties. Due to the spatial coupling in the likelihood functions, evaluation of the posterior normalizing constant is computationally demanding, and brute-force, single-site updating Markov chain Monte Carlo (MCMC) algorithms converge far too slowly to be useful. We construct two classes of approximate posterior models, which we assess analytically and efficiently using the recursive forward–backward algorithm. These approximate posterior densities are used as proposal densities in an independent proposal MCMC algorithm to determine the correct posterior model. A set of synthetic realistic examples is presented. The proposed approximations provide efficient proposal densities, which results in acceptance probabilities in the range 0.10–0.50 in the MCMC algorithm. A case study of lithology/fluid seismic inversion is presented. The lithology/fluid classes and the seismic material properties can be reliably predicted. Numéro de notice : A2020-093 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2951205 Date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2951205 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94667
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1957 - 1968[article]