Descripteur
Documents disponibles dans cette catégorie (2153)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Comparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data / Andras Balazs in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
[article]
Titre : Comparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data Type de document : Article/Communication Auteurs : Andras Balazs, Auteur ; Eero Liski, Auteur ; Sakari Tuominen, Auteur Année de publication : 2022 Article en page(s) : n° 100012 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme génétique
[Termes IGN] bois sur pied
[Termes IGN] classification barycentrique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] covariance
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] peuplement forestier
[Termes IGN] réseau neuronal artificiel
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) In the remote sensing of forests, point cloud data from airborne laser scanning contains high-value information for predicting the volume of growing stock and the size of trees. At the same time, laser scanning data allows a very high number of potential features that can be extracted from the point cloud data for predicting the forest variables. In some methods, the features are first extracted by user-defined algorithms and the best features are selected based on supervised learning, whereas both tasks can be carried out automatically by deep learning methods typically based on deep neural networks. In this study we tested k-nearest neighbor method combined with genetic algorithm (k-NN), artificial neural network (ANN), 2-dimensional convolutional neural network (2D-CNN) and 3-dimensional CNN (3D-CNN) for estimating the following forest variables: volume of growing stock, stand mean height and mean diameter. The results indicate that there were no major differences in the accuracy of the tested methods, but the ANN and 3D-CNN generally resulted in the lowest RMSE values for the predicted forest variables and the highest R2 values between the predicted and observed forest variables. The lowest RMSE scores were 20.3% (3D-CNN), 6.4% (3D-CNN) and 11.2% (ANN) and the highest R2 results 0.90 (3D-CNN), 0.95 (3D-CNN) and 0.85 (ANN) for volume of growing stock, stand mean height and mean diameter, respectively. Covariances of all response variable combinations and all predictions methods were lower than corresponding covariances of the field observations. ANN predictions had the highest covariances for mean height vs. mean diameter and total growing stock vs. mean diameter combinations and 3D-CNN for mean height vs. total growing stock. CNNs have distinct theoretical advantage over the other methods in complex recognition or classification tasks, but the utilization of their full potential may possibly require higher point density clouds than applied here. Thus, the relatively low density of the point clouds data may have been a contributing factor to the somewhat inconclusive ranking of the methods in this study. The input data and computer codes are available at: https://github.com/balazsan/ALS_NNs. Numéro de notice : A2022-265 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.ophoto.2022.100012 Date de publication en ligne : 12/03/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100263
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 4 (April 2022) . - n° 100012[article]Data assimilation of growing stock volume using a sequence of remote sensing data from different sensors / Niels Lindgren in Canadian journal of remote sensing, vol 48 n° 2 (April 2022)
[article]
Titre : Data assimilation of growing stock volume using a sequence of remote sensing data from different sensors Titre original : Assimilation de données de volume de bois à l’aide d’une séquence de données de télédétection provenant de différents capteurs Type de document : Article/Communication Auteurs : Niels Lindgren, Auteur ; Hakan Olsson, Auteur ; Kenneth Nyström, Auteur ; Mattias Nyström, Auteur ; Göran Stahl, Auteur Année de publication : 2022 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Betula (genre)
[Termes IGN] capital sur pied
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] étalonnage des données
[Termes IGN] filtre de Kalman
[Termes IGN] forêt boréale
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Quercus (genre)
[Termes IGN] Suède
[Termes IGN] volume en boisRésumé : (auteur) Airborne Laser Scanning (ALS) has implied a disruptive transformation of how data are gathered for forest management planning in Nordic countries. We show in this study that the accuracy of ALS predictions of growing stock volume can be maintained and even improved over time if they are forecasted and assimilated with more frequent but less accurate remote sensing data sources like satellite images, digital photogrammetry, and InSAR. We obtained these results by introducing important methodological adaptations to data assimilation compared to previous forestry studies in Sweden. On a test site in the southwest of Sweden (58°27′N, 13°39′E), we evaluated the performance of the extended Kalman filter and a proposed modified filter that accounts for error correlations. We also applied classical calibration to the remote sensing predictions. We evaluated the developed methods using a dataset with nine different acquisitions of remotely sensed data from a mix of sensors over four years, starting and ending with ALS-based predictions of growing stock volume. The results showed that the modified filter and the calibrated predictions performed better than the standard extended Kalman filter and that at the endpoint the prediction based on data assimilation implied an improved accuracy (25.0% RMSE), compared to a new ALS-based prediction (27.5% RMSE). Numéro de notice : A2022-144 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1080/07038992.2021.1988542 Date de publication en ligne : 17/10/2021 En ligne : https://doi.org/10.1080/07038992.2021.1988542 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99985
in Canadian journal of remote sensing > vol 48 n° 2 (April 2022) . - pp[article]Drought impacts in forest canopy and deciduous tree saplings in Central European forests / Mirela Beloiu in Forest ecology and management, vol 509 (April-1 2022)
[article]
Titre : Drought impacts in forest canopy and deciduous tree saplings in Central European forests Type de document : Article/Communication Auteurs : Mirela Beloiu, Auteur ; Reinhold Stahlmann, Auteur ; Carl Beierkuhnlein, Auteur Année de publication : 2022 Article en page(s) : n° 120075 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Bavière (Allemagne)
[Termes IGN] bois mort
[Termes IGN] canopée
[Termes IGN] dendrométrie
[Termes IGN] données de terrain
[Termes IGN] écosystème forestier
[Termes IGN] jeune arbre
[Termes IGN] mortalité
[Termes IGN] peuplement mélangé
[Termes IGN] phénomène climatique extrême
[Termes IGN] Pinophyta
[Termes IGN] régénération (sylviculture)
[Termes IGN] résilience écologique
[Termes IGN] sécheresse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Forests worldwide are increasingly exposed to extreme weather events. Drought deteriorates the health, structure, and functioning of forests, which can lead to reduced diversity, decreased productivity, and increased tree mortality. Therefore, it is an urgent need to assess the impact of drought on tree species. Due to differences in tree physiology, saplings and mature trees are likely to respond specifically to drought conditions. In contrast to mature trees, little is known about the response of saplings to drought. Here, we combine in-situ field measurements for saplings of deciduous tree species with remote sensing for forest canopy to assess drought damage, recovery, and sapling mortality patterns during a centennial drought (2018, 2019) and beyond (2020). We measured 2051 saplings out of 214 plots in Central Germany. Forest canopy health was assessed using 10 × 10 m resolution satellite observations for the same locations. We (1) demonstrate that forest canopy exhibits long-lasting drought-induced effects, (2) show that saplings have a remarkable capacity to recover from drought and survive a subsequent drought, (3) demonstrate that reduced sapling recovery leads to their mortality, (4) reveal that drought damage on saplings increases from pioneer to non-pioneer species, and mortality is ranking from Sorbus aucuparia > Sambucus nigra > Fraxinus excelsior, Acer campestre, Frangula alnus > Ulmus glabra > Carpinus betulus > Betula pendula, Fagus sylvatica > Acer pseudoplatanus > Quercus petraea > Corylus avellana, Crataegus spp., > Prunus avium, Quercus robur; and (5) link drought response to site conditions, indicating that species diversity and winter precipitation as relevant indicators of tree health. If periods of drought become more frequent, as expected, this could negatively impact mid-term forest recovery, alter long-term tree species assemblages and reduce biodiversity and functional resilience of forest ecosystems. We suggest that models of forest response to drought should differentiate between the forest canopy and understory and also consider species-specific responses as we found a broad spectrum of responses within the same plant functional type of deciduous tree species in terms of drought damage and recovery. Numéro de notice : A2022-191 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120075 Date de publication en ligne : 12/02/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120075 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99947
in Forest ecology and management > vol 509 (April-1 2022) . - n° 120075[article]Estimation and testing of linkages between forest structure and rainfall interception characteristics of a Robinia pseudoacacia plantation on China’s Loess Plateau / Changkun Ma in Journal of Forestry Research, vol 33 n° 2 (April 2022)
[article]
Titre : Estimation and testing of linkages between forest structure and rainfall interception characteristics of a Robinia pseudoacacia plantation on China’s Loess Plateau Type de document : Article/Communication Auteurs : Changkun Ma, Auteur ; Yi Luo, Auteur ; Mingan Shao, Auteur ; Xiaoxu Jia, Auteur Année de publication : 2022 Article en page(s) : pp 529 - 542 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] canopée
[Termes IGN] capacité de stockage
[Termes IGN] Chine
[Termes IGN] pluie
[Termes IGN] régression multiple
[Termes IGN] Robinia pseudoacacia
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] zone semi-aride
[Vedettes matières IGN] ForesterieMots-clés libres : Rainfall interception loss Résumé : (auteur) Understanding the interaction between canopy structure and the parameters of interception loss is essential in predicting the variations in partitioning rainfall and water resources as affected by changes in canopy structure and in implementing water-based management in semiarid forest plantations. In this study, seasonal variations in rainfall interception loss and canopy storage capacity as driven by canopy structure were predicted and the linkages were tested using seasonal filed measurements. The study was conducted in nine 50 m × 50 m Robinia pseudoacacia plots in the semiarid region of China’s Loess Plateau. Gross rainfall, throughfall and stemflow were measured in seasons with and without leaves in 2015 and 2016. Results show that measured average interception loss for the nine plots were 17.9% and 9.4% of gross rainfall during periods with leaves (the growing season) and without leaves, respectively. Average canopy storage capacity estimated using an indirect method was 1.3 mm in the growing season and 0.2 mm in the leafless season. Correlations of relative interception loss and canopy storage capacity to canopy variables were highest for leaf/wood area index (LAI/WAI) and canopy cover, followed by bark area, basal area, tree height and stand density. Combined canopy cover, leaf/wood area index and bark area multiple regression models of interception loss and canopy storage capacity were established for the growing season and in the leafless season in 2015. It explained 97% and 96% of the variations in relative interception loss during seasons with and without leaves, respectively. It also explained 98% and 99% of the variations in canopy storage capacity during seasons with and without leaves, respectively. The empirical regression models were validated using field data collected in 2016. The models satisfactorily predicted relative interception loss and canopy storage capacity during seasons with and without leaves. This study provides greater understanding about the effects of changes in tree canopy structure (e.g., dieback or mortality) on hydrological processes. Numéro de notice : A2022-334 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s11676-021-01324-w Date de publication en ligne : 06/06/2021 En ligne : https://doi.org/10.1007/s11676-021-01324-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100668
in Journal of Forestry Research > vol 33 n° 2 (April 2022) . - pp 529 - 542[article]Fertilization modifies forest stand growth but not stand density: consequences for modelling stand dynamics in a changing climate / Hans Pretzsch in Forestry, an international journal of forest research, vol 95 n° 2 (April 2022)
[article]
Titre : Fertilization modifies forest stand growth but not stand density: consequences for modelling stand dynamics in a changing climate Type de document : Article/Communication Auteurs : Hans Pretzsch, Auteur ; Peter Biber, Auteur Année de publication : 2022 Article en page(s) : pp 187 - 200 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] allométrie
[Termes IGN] analyse comparative
[Termes IGN] azote
[Termes IGN] changement climatique
[Termes IGN] croissance des arbres
[Termes IGN] densité du peuplement
[Termes IGN] dynamique de la végétation
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] gestion forestière
[Termes IGN] modèle statistique
[Termes IGN] nutriment végétal
[Termes IGN] Pinus sylvestris
[Termes IGN] puits de carbone
[Vedettes matières IGN] ForesterieRésumé : (auteur) Knowledge of the maximum forest stand density and the self-thinning process is important for understanding, modelling and scheduling thinnings in silviculture. The upper trajectories of stem number, N, vs mean diameter, dq or mean tree volume vs stem number are often used for quantifying maximum stand density. The long debate about how site conditions modify these relationships is presently revived due to global change. A crucial question is whether environmental conditions alter the trajectories themselves or just the velocity at which stands move along them. Our contribution is based on fully stocked plots from long-term Scots pine (Pinus sylvestris L.) fertilization experiments along an ecological gradient in South Germany. This allows us to compare the self-thinning trajectories of fertilized and unfertilized plots under different environmental conditions. We can show that repeated fertilization with nitrogen did not change the N ~ dq trajectories. Assuming that fertilization affects forests in a similar way as an ongoing atmospheric N-deposition, this means that presently growth, mortality, and volume accumulation in forest stands proceed faster in time but still follow the same N ~ dq allometric trajectories. Furthermore, we found that the level of the self-thinning line generally increases with the annual precipitation. The allometric self-thinning exponent, however, did not respond to environmental conditions. Finally, we quantitatively demonstrate and discuss the implications and consequences of the results regarding understanding and modelling forest stand dynamics, carbon sequestration and the development and adaptation of silvicultural guidelines in view of climate change. Numéro de notice : A2022-261 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1093/forestry/cpab036 Date de publication en ligne : 30/07/2021 En ligne : https://doi.org/10.1093/forestry/cpab036 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100249
in Forestry, an international journal of forest research > vol 95 n° 2 (April 2022) . - pp 187 - 200[article]Natural disturbances risks in European boreal and temperate forests and their links to climate change : A review of modelling approaches / Joyce Machado Nunes Romeiro in Forest ecology and management, vol 509 (April-1 2022)PermalinkPolGAN: A deep-learning-based unsupervised forest height estimation based on the synergy of PolInSAR and LiDAR data / Qi Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 186 (April 2022)PermalinkPotential of Bayesian formalism for the fusion and assimilation of sequential forestry data in time and space / Cheikh Mohamedou in Canadian Journal of Forest Research, Vol 52 n° 4 (April 2022)PermalinkProblems with models assessing influences of tree size and inter-tree competitive processes on individual tree growth: a cautionary tale / P.W. West in Journal of Forestry Research, vol 33 n° 2 (April 2022)PermalinkSimulating future LUCC by coupling climate change and human effects based on multi-phase remote sensing data / Zihao Huang in Remote sensing, vol 14 n° 7 (April-1 2022)PermalinkSpecies level classification of Mediterranean sparse forests-maquis formations using Sentinel-2 imagery / Semiha Demirbaş Çağlayana in Geocarto international, vol 37 n° 6 ([01/04/2022])PermalinkMapping forest site quality at national level / Ana Aguirre in Forest ecology and management, vol 508 (March-15 2022)PermalinkTwo-phase forest inventory using very-high-resolution laser scanning / Henrik J. Persson in Remote sensing of environment, vol 271 (March- 2 2022)PermalinkAre northern German Scots pine plantations climate smart? The impact of large-scale conifer planting on climate, soil and the water cycle / Christoph Leuschner in Forest ecology and management, vol 507 (March-1 2022)PermalinkAssessing the dependencies of scots pine (Pinus sylvestris L.) structural characteristics and internal wood property variation / Ville Kankare in Forests, vol 13 n° 3 (March 2022)PermalinkClassification of Eucalyptus plantation Site Index (SI) and Mean Annual Increment (MAI) prediction using DEM-based geomorphometric and climatic variables in Brazil / Aliny Aparecida Dos Reis in Geocarto international, vol 37 n° 5 ([01/03/2022])PermalinkEffects of numbers of observations and predictors for various model types on the performance of forest inventory with airborne laser scanning / Diogo N. Cosenza in Canadian Journal of Forest Research, Vol 52 n° 3 (March 2022)PermalinkEstimation of uneven-aged forest stand parameters, crown closure and land use/cover using the Landsat 8 OLI satellite image / Sinan Kaptan in Geocarto international, vol 37 n° 5 ([01/03/2022])PermalinkEvolution de la ressource et de la production des chênes pubescent, pédonculé et sessile / Ingrid Bonhême in Forêt entreprise, n° 261 (novembre-décembre 2021)PermalinkTowards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD) / Langning Huo in Remote sensing of environment, vol 270 (March 2022)PermalinkUltrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach / Linyuan Li in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)PermalinkUnexpected negative effect of available water capacity detected on recent conifer forest growth trends across wide environmental gradients / Clémentine Ols in Ecosystems, vol 25 n° 2 (March 2022)PermalinkCompetition and climate influence in the basal area increment models for Mediterranean mixed forests / Diego Rodríguez de Prado in Forest ecology and management, vol 506 (February-15 2022)PermalinkMulti-species individual tree segmentation and identification based on improved mask R-CNN and UAV imagery in mixed forests / Chong Zhang in Remote sensing, vol 14 n° 4 (February-2 2022)PermalinkScorch height and volume modeling in prescribed fires: Effects of canopy gaps in Pinus pinaster stands in Southern Europe / J.R. Molina in Forest ecology and management, vol 506 (February-15 2022)Permalink