Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing . vol 86 n° 3Paru le : 01/03/2020 |
[n° ou bulletin]
est un bulletin de Photogrammetric Engineering & Remote Sensing, PERS / American society for photogrammetry and remote sensing (1975 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierEdge-reinforced convolutional neural network for road detection in very-high-resolution remote sensing imagery / Xiaoyan Lu in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
[article]
Titre : Edge-reinforced convolutional neural network for road detection in very-high-resolution remote sensing imagery Type de document : Article/Communication Auteurs : Xiaoyan Lu, Auteur ; Yanfei Zhong, Auteur ; Zhuo Zheng, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 153 - 160 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] accentuation de contours
[Termes IGN] analyse multiéchelle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] filtrage du bruit
[Termes IGN] image à très haute résolution
[Termes IGN] ombre
[Termes IGN] segmentation d'imageRésumé : (auteur) Road detection in very-high-resolution remote sensing imagery is a hot research topic. However, the high resolution results in highly complex data distributions, which lead to much noise for road detection—for example, shadows and occlusions caused by disturbance on the roadside make it difficult to accurately recognize road. In this article, a novel edge-reinforced convolutional neural network, combined with multiscale feature extraction and edge reinforcement, is proposed to alleviate this problem. First, multiscale feature extraction is used in the center part of the proposed network to extract multiscale context information. Then edge reinforcement, applying a simplified U-Net to learn additional edge information, is used to restore the road information. The two operations can be used with different convolutional neural networks. Finally, two public road data sets are adopted to verify the effectiveness of the proposed approach, with experimental results demonstrating its superiority. Numéro de notice : A2020-145 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.3.153 Date de publication en ligne : 01/03/2020 En ligne : https://doi.org/10.14358/PERS.86.3.153 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94774
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 3 (March 2020) . - pp 153 - 160[article]The application of bidirectional reflectance distribution function data to recognize the spatial heterogeneity of mixed pixels in vegetation remote sensing: a simulation study / Yanan Yan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
[article]
Titre : The application of bidirectional reflectance distribution function data to recognize the spatial heterogeneity of mixed pixels in vegetation remote sensing: a simulation study Type de document : Article/Communication Auteurs : Yanan Yan, Auteur ; Lei Deng, Auteur ; L. Xian-Lin, Auteur Année de publication : 2020 Article en page(s) : pp 161 - 167 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] agrégation spatiale
[Termes IGN] anisotropie
[Termes IGN] bande spectrale
[Termes IGN] classification pixellaire
[Termes IGN] détection d'objet
[Termes IGN] dispersion
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] distribution spatiale
[Termes IGN] extraction de la végétation
[Termes IGN] hétérogénéité spatiale
[Termes IGN] modèle de simulation
[Termes IGN] modèle de transfert radiatif
[Termes IGN] réflectance
[Termes IGN] régression linéaire
[Termes IGN] télédétectionRésumé : (auteur) Spectral decomposition of mixed pixels can provide information about the abundance of end members but fails to indicate the spatial distribution of end members in vegetation remote sensing. This work is a significant attempt to use the bidirectional reflectance distribution function (BRDF) characteristics of mixed pixels in the prediction of spatial-heterogeneity metrics. Data sets from this function with different spatial distributions were constructed by the discrete anisotropic radiative transfer model, and three spatial aggregation and dispersion metrics were calculated: percentage of like adjacencies, spatial division index, and aggregation index. A simple linear regression method was used to construct the prediction model of spatial aggregation and dispersion metrics. The potential of multiangle remote sensing model for identifying spatial patterns well was demonstrated, and its importance was found to differ for different spatial aggregation and dispersion metrics. Specifically, the precision of the model based on multiangle reflectance used for predicting the spatial division index could meet a minimum root mean square of 5.95%. The reflectance features from backward observation on the principal plane play the leading role in recognizing the spatial heterogeneity of mixed pixels. The prediction model is sufficiently robust to distinguish the same vegetation with different growth trends, but also performs well when the ground objects have a smaller reflectance difference in the mixed pixels in a certain band. This study is expected to offer a new thought for spatial-heterogeneity identification of ground objects and thus promote the development of remote sensing technology in assessing spatial distribution. Numéro de notice : A2020-146 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.3.161 Date de publication en ligne : 01/03/2020 En ligne : https://doi.org/10.14358/PERS.86.3.161 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94775
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 3 (March 2020) . - pp 161 - 167[article]Reducing shadow effects on the co-registration of aerial image pairs / Matthew Plummer in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
[article]
Titre : Reducing shadow effects on the co-registration of aerial image pairs Type de document : Article/Communication Auteurs : Matthew Plummer, Auteur ; Douglas A. Stow, Auteur ; Emmanuel Storey, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 177 - 186 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de données
[Termes IGN] correction des ombres
[Termes IGN] détection automatique
[Termes IGN] détection de changement
[Termes IGN] effet d'ombre
[Termes IGN] enregistrement de données
[Termes IGN] image à haute résolution
[Termes IGN] image aérienne
[Termes IGN] image multitemporelle
[Termes IGN] intensité lumineuse
[Termes IGN] masque
[Termes IGN] Ransac (algorithme)
[Termes IGN] SIFT (algorithme)Résumé : (auteur) Image registration is an important preprocessing step prior to detecting changes using multi-temporal image data, which is increasingly accomplished using automated methods. In high spatial resolution imagery, shadows represent a major source of illumination variation, which can reduce the performance of automated registration routines. This study evaluates the statistical relationship between shadow presence and image registration accuracy, and whether masking and normalizing shadows leads to improved automatic registration results. Eighty-eight bitemporal aerial image pairs were co-registered using software called Scale Invariant Features Transform (SIFT) and Random Sample Consensus (RANSAC) Alignment (SARA). Co-registration accuracy was assessed at different levels of shadow coverage and shadow movement within the images. The primary outcomes of this study are (1) the amount of shadow in a multi-temporal image pair is correlated with the accuracy/success of automatic co-registration; (2) masking out shadows prior to match point select does not improve the success of image-to-image co-registration; and (3) normalizing or brightening shadows can help match point routines find more match points and therefore improve performance of automatic co-registration. Normalizing shadows via a standard linear correction provided the most reliable co-registration results in image pairs containing substantial amounts of relative shadow movement, but had minimal effect for pairs with stationary shadows. Numéro de notice : A2020-147 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.4.177 Date de publication en ligne : 01/03/2020 En ligne : https://doi.org/10.14358/PERS.86.4.177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94776
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 3 (March 2020) . - pp 177 - 186[article]Assessment of salt marsh change on Assateague Island National Seashore between 1962 and 2016 / Anthony Campbell in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
[article]
Titre : Assessment of salt marsh change on Assateague Island National Seashore between 1962 and 2016 Type de document : Article/Communication Auteurs : Anthony Campbell, Auteur ; Yeqiao Wang, Auteur Année de publication : 2020 Article en page(s) : pp 187 - 194 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse diachronique
[Termes IGN] approche hiérarchique
[Termes IGN] Atlantique (océan)
[Termes IGN] biodiversité
[Termes IGN] cartographie thématique
[Termes IGN] détection de changement
[Termes IGN] Etats-Unis
[Termes IGN] image à très haute résolution
[Termes IGN] image satellite
[Termes IGN] lidar bathymétrique
[Termes IGN] littoral
[Termes IGN] marais salant
[Termes IGN] montée du niveau de la mer
[Termes IGN] service écosystémique
[Termes IGN] surveillance du littoralRésumé : (auteur) Salt marshes provide extensive ecosystem services, including high biodiversity, denitrification, and wave attenuation. In the mid-Atlantic, sea level rise is predicted to affect salt marsh ecosystems severely. This study mapped the entirety of Assateague Island with Very High Resolution satellite imagery and object-based methods to determine an accurate salt marsh baseline for change analysis. Topobathy-metric light detection and ranging was used to map the salt marsh and model expected tidal effects. The satellite imagery, collected in 2016 and classified at two hierarchical thematic schemes, were compared to determine appropriate thematic richness. Change analysis between this 2016 map and both a manually delineated 1962 salt marsh extent and image classification of the island from 1994 determined rates off change. The study found that from 1962 to 1994, salt marsh expanded by 4.01 ha/year, and from 1994 to 2016 salt marsh was lost at a rate of -3.4 ha/ year. The study found that salt marsh composition, (percent vegetated salt marsh) was significantly influenced by elevation, the length of mosquito ditches, and starting salt marsh composition. The study illustrates the importance of remote sensing monitoring for understanding site-specific changes to salt marsh environments and the barrier island system. Numéro de notice : A2020-148 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.3.187 Date de publication en ligne : 01/03/2020 En ligne : https://doi.org/10.14358/PERS.86.3.187 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94777
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 3 (March 2020) . - pp 187 - 194[article]