Cartography and Geographic Information Science / Cartography and geographic information society . vol 47 n° 3Paru le : 01/05/2020 |
[n° ou bulletin]
est un bulletin de Cartography and Geographic Information Science / Cartography and geographic information society (1999 -)
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
032-2020031 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierA method for urban population density prediction at 30m resolution / Krishnachandran Balakrishnan in Cartography and Geographic Information Science, vol 47 n° 3 (May 2020)
[article]
Titre : A method for urban population density prediction at 30m resolution Type de document : Article/Communication Auteurs : Krishnachandran Balakrishnan, Auteur Année de publication : 2020 Article en page(s) : pp 193 - 213 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] densité de population
[Termes IGN] gestion urbaine
[Termes IGN] hauteur du bâti
[Termes IGN] image Cartosat-1
[Termes IGN] Inde
[Termes IGN] logiciel de traitement d'image
[Termes IGN] modèle de simulation
[Termes IGN] modélisation du bâti
[Termes IGN] système d'information géographique
[Termes IGN] véhicule automobileRésumé : (auteur) This paper proposes a new method for urban population density prediction at 30 m resolution. Using data for Bangalore, the paper demonstrates that population within each 30 m residential built-up cell can be modeled as a function of cell-level data on street density and building heights and ward-level data on car ownership. Building-height data were generated from Cartosat-1 stereo imagery using an open-source satellite stereo image processing software. Using this building-height data in conjunction with the other datasets, the paper demonstrates that a 30 m resolution population density surface can be generated such that, when summed to the ward level, the median absolute percentage error between predicted population and known census population at the ward level is 8.29%. The paper also shows that the relationship between population density, street density, building height, and ward level car ownership is spatially non-stationary. A fine-grained understanding of urban population densities, as enabled by the proposed method, can be beneficial to research, policy, and practice related to cities. Numéro de notice : A2020-168 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1687014 Date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1080/15230406.2019.1687014 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94839
in Cartography and Geographic Information Science > vol 47 n° 3 (May 2020) . - pp 193 - 213[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020031 RAB Revue Centre de documentation En réserve L003 Disponible Comparing the roles of landmark visual salience and semantic salience in visual guidance during indoor wayfinding / Weihua Dong in Cartography and Geographic Information Science, vol 47 n° 3 (May 2020)
[article]
Titre : Comparing the roles of landmark visual salience and semantic salience in visual guidance during indoor wayfinding Type de document : Article/Communication Auteurs : Weihua Dong, Auteur ; Tong Qin, Auteur ; Hua Liao, Auteur Année de publication : 2020 Article en page(s) : pp 229 - 243 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse visuelle
[Termes IGN] interprétation (psychologie)
[Termes IGN] oculométrie
[Termes IGN] point de repère
[Termes IGN] questionnaire
[Termes IGN] saillance
[Termes IGN] scène intérieure
[Termes IGN] segmentation sémantique
[Termes IGN] test statistique
[Termes IGN] vision
[Termes IGN] vision par ordinateur
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) Landmark visual salience (characterized by features that contrast with their surroundings and visual peculiarities) and semantic salience (characterized by features with unusual or important meaning and content in the environment) are two important factors that affect an individual’s visual attention during wayfinding. However, empirical evidence regarding which factor dominates visual guidance during indoor wayfinding is rare, especially in real-world environments. In this study, we assumed that semantic salience dominates the guidance of visual attention, which means that semantic salience will correlate with participants’ fixations more significantly than visual salience. Notably, in previous studies, semantic salience was shown to guide visual attention in static images or familiar scenes in a laboratory environment. To validate this assumption, first, we collected the eye movement data of 22 participants as they found their way through a building. We then computed the landmark visual and semantic salience using computer vision models and questionnaires, respectively. Finally, we conducted correlation tests to verify our assumption. The results failed to validate our assumption and show that the role of salience in visual guidance in a real-world wayfinding process is different from the role of salience in perceiving static images or scenes in a laboratory. Visual salience dominates visual attention during indoor wayfinding, but the roles of salience in visual guidance are mixed across different landmark classes and tasks. The results provide new evidence for understanding how pedestrians visually interpret landmark information during real-world indoor wayfinding. Numéro de notice : A2020-169 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1697965 Date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1080/15230406.2019.1697965 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94841
in Cartography and Geographic Information Science > vol 47 n° 3 (May 2020) . - pp 229 - 243[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020031 RAB Revue Centre de documentation En réserve L003 Disponible Delineating and modeling activity space using geotagged social media data / Lingqian Hu in Cartography and Geographic Information Science, vol 47 n° 3 (May 2020)
[article]
Titre : Delineating and modeling activity space using geotagged social media data Type de document : Article/Communication Auteurs : Lingqian Hu, Auteur ; Zhenhong Li, Auteur ; Xinyue Ye, Auteur Année de publication : 2020 Article en page(s) : pp 277 - 288 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] distance
[Termes IGN] données localisées des bénévoles
[Termes IGN] données massives
[Termes IGN] données socio-économiques
[Termes IGN] logement
[Termes IGN] loisir
[Termes IGN] Los Angeles
[Termes IGN] quartier
[Termes IGN] réseau social
[Termes IGN] sport
[Termes IGN] Twitter
[Termes IGN] voisinage (relation topologique)
[Termes IGN] zone urbaineRésumé : (auteur) It has become increasingly important in spatial equity studies to understand activity spaces – where people conduct regular out-of-home activities. Big data can advance the identification of activity spaces and the understanding of spatial equity. Using the Los Angeles metropolitan area for the case study, this paper employs geotagged Twitter data to delineate activity spaces with two spatial measures: first, the average distance between users’ home location and activity locations; and second, the area covered between home and activity locations. The paper also finds significant relationship between the spatial measures of activity spaces and neighborhood spatial and socioeconomic characteristics. This research enriches the literature that aims to address spatial equity in activity spaces and demonstrates the applicability of big data in urban socio-spatial research. Numéro de notice : A2020-135 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1705187 Date de publication en ligne : 10/02/2020 En ligne : https://doi.org/10.1080/15230406.2019.1705187 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94843
in Cartography and Geographic Information Science > vol 47 n° 3 (May 2020) . - pp 277 - 288[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2020031 RAB Revue Centre de documentation En réserve L003 Disponible