Paru le : 01/05/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
079-2020051 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierA review of assessment methods for cellular automata models of land-use change and urban growth / Xiaohua Tong in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
[article]
Titre : A review of assessment methods for cellular automata models of land-use change and urban growth Type de document : Article/Communication Auteurs : Xiaohua Tong, Auteur ; Yongjiu Feng, Auteur Année de publication : 2020 Article en page(s) : pp 866 - 898 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse du paysage
[Termes IGN] automate cellulaire
[Termes IGN] changement d'occupation du sol
[Termes IGN] croissance urbaine
[Termes IGN] dynamique de la végétation
[Termes IGN] dynamique spatiale
[Termes IGN] Kappa de Cohen
[Termes IGN] matrice
[Termes IGN] modèle de simulation
[Termes IGN] population urbaine
[Termes IGN] propagation d'erreurRésumé : (auteur) Cellular automata (CA) models are in growing use for land-use change simulation and future scenario prediction. It is necessary to conduct model assessment that reports the quality of simulation results and how well the models reproduce reliable spatial patterns. Here, we review 347 CA articles published during 1999–2018 identified by a Scholar Google search using ‘cellular automata’, ‘land’ and ‘urban’ as keywords. Our review demonstrates that, during the past two decades, 89% of the publications include model assessment related to dataset, procedure and result using more than ten different methods. Among all methods, cell-by-cell comparison and landscape analysis were most frequently applied in the CA model assessment; specifically, overall accuracy and standard Kappa coefficient respectively rank first and second among all metrics. The end-state assessment is often criticized by modelers because it cannot adequately reflect the modeling ability of CA models. We provide five suggestions to the method selection, aiming to offer a background framework for future method choices as well as urging to focus on the assessment of input data and error propagation, procedure, quantitative and spatial change, and the impact of driving factors. Numéro de notice : A2020-809 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1684499 Date de publication en ligne : 05/11/2019 En ligne : https://doi.org/10.1080/13658816.2019.1684499 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94880
in International journal of geographical information science IJGIS > vol 34 n° 5 (May 2020) . - pp 866 - 898[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020051 RAB Revue Centre de documentation En réserve L003 Disponible Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks / Mahmoud Saeedimoghaddam in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
[article]
Titre : Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks Type de document : Article/Communication Auteurs : Mahmoud Saeedimoghaddam, Auteur ; Tomasz F. Stepinski, Auteur Année de publication : 2020 Article en page(s) : pp 947 - 968 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] carrefour
[Termes IGN] carte ancienne
[Termes IGN] carte numérisée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données localisées
[Termes IGN] Etats-Unis
[Termes IGN] extraction du réseau routier
[Termes IGN] image RVB
[Termes IGN] numérisation automatique
[Termes IGN] représentation cartographique
[Termes IGN] système d'information géographique
[Termes IGN] vision par ordinateurRésumé : (auteur) Road intersection data have been used across a range of geospatial analyses. However, many datasets dating from before the advent of GIS are only available as historical printed maps. To be analyzed by GIS software, they need to be scanned and transformed into a usable (vector-based) format. Because the number of scanned historical maps is voluminous, automated methods of digitization and transformation are needed. Frequently, these processes are based on computer vision algorithms. However, the key challenges to this are (1) the low conversion accuracy for low quality and visually complex maps, and (2) the selection of optimal parameters. In this paper, we used a region-based deep convolutional neural network-based framework (RCNN) for object detection, in order to automatically identify road intersections in historical maps of several cities in the United States of America. We found that the RCNN approach is more accurate than traditional computer vision algorithms for double-line cartographic representation of the roads, though its accuracy does not surpass all traditional methods used for single-line symbols. The results suggest that the number of errors in the outputs is sensitive to complexity and blurriness of the maps, and to the number of distinct red-green-blue (RGB) combinations within them. Numéro de notice : A2020-205 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1696968 Date de publication en ligne : 28/11/2019 En ligne : https://doi.org/10.1080/13658816.2019.1696968 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94882
in International journal of geographical information science IJGIS > vol 34 n° 5 (May 2020) . - pp 947 - 968[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020051 RAB Revue Centre de documentation En réserve L003 Disponible Evaluating the impact of visualization of risk upon emergency route-planning / Lisa Cheong in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
[article]
Titre : Evaluating the impact of visualization of risk upon emergency route-planning Type de document : Article/Communication Auteurs : Lisa Cheong, Auteur ; Christoph Kinkeldey, Auteur ; Ingrid Burfurd, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1022 - 1050 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] analyse géovisuelle
[Termes IGN] calcul d'itinéraire
[Termes IGN] cartographie d'urgence
[Termes IGN] cartographie des risques
[Termes IGN] inondation
[Termes IGN] représentation cartographique
[Termes IGN] secours d'urgence
[Termes IGN] sémiologie graphique
[Termes IGN] symbole graphiqueRésumé : (auteur) This paper reports on a controlled experiment evaluating how different cartographic representations of risk affect participants’ performance on a complex spatial decision task: route planning. The specific experimental scenario used is oriented towards emergency route-planning during flood response. The experiment compared six common abstract and metaphorical graphical symbolizations of risk. The results indicate a pattern of less-preferred graphical symbolizations associated with slower responses and lower-risk route choices. One mechanism that might explain these observed relationships would be that more complex and effortful maps promote closer attention paid by participants and lower levels of risk taking. Such user considerations have important implications for the design of maps and mapping interfaces for emergency planning and response. The data also highlights the importance of the ‘right decision, wrong outcome problem’ inherent in decision-making under uncertainty: in individual instances, more risky decisions do not always lead to worse outcomes. Numéro de notice : A2020-206 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1701677 Date de publication en ligne : 12/12/2019 En ligne : https://doi.org/10.1080/13658816.2019.1701677 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94885
in International journal of geographical information science IJGIS > vol 34 n° 5 (May 2020) . - pp 1022 - 1050[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020051 RAB Revue Centre de documentation En réserve L003 Disponible Pedestrian network generation based on crowdsourced tracking data / Xue Yang in International journal of geographical information science IJGIS, vol 34 n° 5 (May 2020)
[article]
Titre : Pedestrian network generation based on crowdsourced tracking data Type de document : Article/Communication Auteurs : Xue Yang, Auteur ; Luliang Tang, Auteur ; Chang Ren, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1051 - 1074 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] approche participative
[Termes IGN] base de données multi-représentation
[Termes IGN] correction géométrique
[Termes IGN] correction topographique
[Termes IGN] dimension fractale
[Termes IGN] données localisées des bénévoles
[Termes IGN] estimation par noyau
[Termes IGN] mobilité urbaine
[Termes IGN] navigation pédestre
[Termes IGN] regroupement de pointsRésumé : (auteur) Pedestrian networks play an important role in various applications, such as pedestrian navigation services and mobility modeling. This paper presents a novel method to extract pedestrian networks from crowdsourced tracking data based on a two-layer framework. This framework includes a walking pattern classification layer and a pedestrian network generation layer. In the first layer, we propose a multi-scale fractal dimension (MFD) algorithm in order to recognize the two different types of walking patterns: walking with a clear destination (WCD) or walking without a clear destination (WOCD). In the second layer, we generate the pedestrian network by combining the pedestrian regions and pedestrian paths. The pedestrian regions are extracted based on a modified connected component analysis (CCA) algorithm from the WOCD traces. We generate the pedestrian paths using a kernel density estimation (KDE)-based point clustering algorithm from the WCD traces. The pedestrian network generation results using two actual crowdsourced datasets show that the proposed method has good performance in both geometrical correctness and topological correctness. Numéro de notice : A2020-207 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1702197 Date de publication en ligne : 09/12/2019 En ligne : https://doi.org/10.1080/13658816.2019.1702197 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94888
in International journal of geographical information science IJGIS > vol 34 n° 5 (May 2020) . - pp 1051 - 1074[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020051 RAB Revue Centre de documentation En réserve L003 Disponible