ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) . vol 164Paru le : 01/06/2020 |
[n° ou bulletin]
est un bulletin de ISPRS Journal of photogrammetry and remote sensing / International society for photogrammetry and remote sensing (1980 -) (1990 -)
[n° ou bulletin]
|
Exemplaires(3)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
081-2020061 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
081-2020063 | DEP-RECP | Revue | LASTIG | Dépôt en unité | Exclu du prêt |
081-2020062 | DEP-RECF | Revue | Nancy | Dépôt en unité | Exclu du prêt |
Dépouillements
Ajouter le résultat dans votre panierPhotogrammetric determination of 3D crack opening vectors from 3D displacement fields / Frank Liebold in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
[article]
Titre : Photogrammetric determination of 3D crack opening vectors from 3D displacement fields Type de document : Article/Communication Auteurs : Frank Liebold, Auteur ; Hans-Gerd Maas, Auteur ; Jessica Deutsch, Auteur Année de publication : 2020 Article en page(s) : pp 1 - 10 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse d'image orientée objet
[Termes IGN] détection d'objet
[Termes IGN] espace image
[Termes IGN] maillage
[Termes IGN] méthode des vecteurs de changement
[Termes IGN] mur
[Termes IGN] séquence d'images
[Termes IGN] translationMots-clés libres : fissure dans du béton Résumé : (Auteur) This publication presents a procedure for the determination of all three components of crack opening vectors from stereoscopic image sequences of a specimen under load in civil engineering material testing. The method is based on analyzing stereoscopic image sequences of a concrete specimen with a surface texture, which is suitable for applying image matching techniques. Spatio-temporal correspondences are established by applying sub-pixel accuracy area based image matching techniques to a grid of surface points. Data acquisition starts at zero load. The load is stepwise or continuously increased during the experiment. The surface points are matched between the stereo images and tracked through each camera image sequence. As an intermediate result, we obtain a set of 3D object surface points for each epoch by spatial intersection. These 3D object points are triangulated into a mesh. Then, the mesh triangles are tested for deformations by transforming the triangles into 2D space and computing the norm of the 2D relative translation vector. Connected components of deformed triangles are determined and crack normals are computed. In the next step, the 3D relative translation vector can be derived for each deformed triangle. Defining local crack opening coordinate systems for the deformed triangles, the three components of the crack opening vectors can be computed. The method has been tested and validated in practical experiments. The technique is capable of quantitatively analyzing cracks with a width of less than one pixel in image space. Numéro de notice : A2020-172 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.03.019 Date de publication en ligne : 08/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.03.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94876
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 1 - 10[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Under-canopy UAV laser scanning for accurate forest field measurements / Eric Hyyppä in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
[article]
Titre : Under-canopy UAV laser scanning for accurate forest field measurements Type de document : Article/Communication Auteurs : Eric Hyyppä, Auteur ; Juha Hyyppä, Auteur ; Teemu Hakala, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 41 - 60 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] balayage laser
[Termes IGN] canopée
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] densité du bois
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] erreur moyenne quadratique
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] hauteur à la base du houppier
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] inventaire forestier local
[Termes IGN] modèle de croissance végétale
[Termes IGN] semis de points
[Termes IGN] télédétection aérienne
[Termes IGN] télémètre laser terrestre
[Termes IGN] télémétrie laser aéroporté
[Termes IGN] troncRésumé : (auteur) Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying activities. From a forest monitoring perspective, there are several technological and operational aspects to address concerning under-canopy flying unmanned airborne vehicles (UAV). To demonstrate this emerging technology, we investigated tree detection and stem curve estimation using laser scanning data obtained with an under-canopy flying UAV. To this end, we mounted a Kaarta Stencil-1 laser scanner with an integrated simultaneous localization and mapping (SLAM) system on board an UAV that was manually piloted with the help of video goggles receiving a live video feed from the onboard camera of the UAV. Using the under-canopy flying UAV, we collected SLAM-corrected point cloud data in a boreal forest on two 32 m 32 m test sites that were characterized as sparse ( = 42 trees) and obstructed ( = 43 trees), respectively. Novel data processing algorithms were applied for the point clouds in order to detect the stems of individual trees and to extract their stem curves and diameters at breast height (DBH). The estimated tree attributes were compared against highly accurate field reference data that was acquired semi-manually with a multi-scan terrestrial laser scanner (TLS). The proposed method succeeded in detecting 93% of the stems in the sparse plot and 84% of the stems in the obstructed plot. In the sparse plot, the DBH and stem curve estimates had a root-mean-squared error (RMSE) of 0.60 cm (2.2%) and 1.2 cm (5.0%), respectively, whereas the corresponding values for the obstructed plot were 0.92 cm (3.1%) and 1.4 cm (5.2%). By combining the stem curves extracted from the under-canopy UAV laser scanning data with tree heights derived from above-canopy UAV laser scanning data, we computed stem volumes for the detected trees with a relative RMSE of 10.1% in both plots. Thus, the combination of under-canopy and above-canopy UAV laser scanning allowed us to extract the stem volumes with an accuracy comparable to the past best studies based on TLS in boreal forest conditions. Since the stems of several spruces located on the test sites suffered from severe occlusion and could not be detected with the stem-based method, we developed a separate work flow capable of detecting trees with occluded stems. The proposed work flow enabled us to detect 98% of trees in the sparse plot and 93% of the trees in the obstructed plot with a 100% correction level in both plots. A key benefit provided by the under-canopy UAV laser scanner is the short period of time required for data collection, currently demonstrated to be much faster than the time required for field measurements and TLS. The quality of the measurements acquired with the under-canopy flying UAV combined with the demonstrated efficiency indicates operational potential for supporting fast and accurate forest resource inventories. Numéro de notice : A2020-240 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.03.021 Date de publication en ligne : 11/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.03.021 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94994
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 41 - 60[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Unsupervised change detection between SAR images based on hypergraphs / Jun Wang in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
[article]
Titre : Unsupervised change detection between SAR images based on hypergraphs Type de document : Article/Communication Auteurs : Jun Wang, Auteur ; Xuexi Yang, Auteur ; Xiangyu Yang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 61 - 72 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification non dirigée
[Termes IGN] classification pixellaire
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] détection de changement
[Termes IGN] Hypergraph Based Data Structure
[Termes IGN] image radar moirée
[Termes IGN] partition des données
[Termes IGN] précision de la classificationRésumé : (auteur) The performance of synthetic aperture radar (SAR) image change detection is mainly relied on the quality of the difference image and the accuracy of the classification method. Considering the above mentioned issues, this paper proposes an unsupervised framework for SAR image change detection in which each pixel is taken as a vertex and the collection of pixels is represented by hyperedges in a hypergraph. Thus, the task of SAR image change detection is formulated as the problem of hypergraph matching and hypergraph partition. First, instead of using the K nearest neighbour rule, we propose a coupling neighbourhood based on the spatial-intensity constraint to gather the neighbours for each vertex. Then, hyperedges are constructed on the pixels and their coupling neighbours. The weight of hyperedge is computed via the sum of the patch-based pairwise affinities within the hyperedge. Through modelling the two hypergraphs on the bi-temporal SAR images, not only the change level of vertices is described, but also the changes of local grouping and consistency within hyperedge are excavated. Thus, the difference image with a good separability can be obtained by matching each vertex and hyperedge between the two hypergraphs. Finally, a generalized hypergraph partition technique is employed to classify changed and unchanged areas in the generated difference image. Experimental results on real SAR datasets confirm the validity of the proposed framework in improving the robustness and accuracy of change detection. Numéro de notice : A2020-251 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.007 Date de publication en ligne : 19/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94995
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 61 - 72[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Counting of grapevine berries in images via semantic segmentation using convolutional neural networks / Laura Zabawa in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
[article]
Titre : Counting of grapevine berries in images via semantic segmentation using convolutional neural networks Type de document : Article/Communication Auteurs : Laura Zabawa, Auteur ; Anna Kicherer, Auteur ; Lasse Klingbeil, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 73 - 83 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] comptage
[Termes IGN] échantillon
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction semi-automatique
[Termes IGN] régression
[Termes IGN] rendement agricole
[Termes IGN] segmentation sémantique
[Termes IGN] traitement d'image
[Termes IGN] viticultureRésumé : (auteur) The extraction of phenotypic traits is often very time and labour intensive. Especially the investigation in viticulture is restricted to an on-site analysis due to the perennial nature of grapevine. Traditionally skilled experts examine small samples and extrapolate the results to a whole plot. Thereby different grapevine varieties and training systems, e.g. vertical shoot positioning (VSP) and semi minimal pruned hedges (SMPH) pose different challenges.
In this paper we present an objective framework based on automatic image analysis which works on two different training systems. The images are collected semi automatic by a camera system which is installed in a modified grape harvester. The system produces overlapping images from the sides of the plants. Our framework uses a convolutional neural network to detect single berries in images by performing a semantic segmentation. Each berry is then counted with a connected component algorithm. We compare our results with the Mask-RCNN, a state-of-the-art network for instance segmentation and with a regression approach for counting. The experiments presented in this paper show that we are able to detect green berries in images despite of different training systems. We achieve an accuracy for the berry detection of 94.0% in the VSP and 85.6% in the SMPH.Numéro de notice : A2020-252 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.002 Date de publication en ligne : 22/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.002 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94996
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 73 - 83[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Improved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation / Eslam Ali in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
[article]
Titre : Improved optical image matching time series inversion approach for monitoring dune migration in North Sinai Sand Sea: Algorithm procedure, application, and validation Type de document : Article/Communication Auteurs : Eslam Ali, Auteur ; Wenbin Xu, Auteur ; Xiao-Li Ding, Auteur Année de publication : 2020 Article en page(s) : pp 106 - 124 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] correction des ombres
[Termes IGN] COSI-Corr
[Termes IGN] déplacement d'objet géographique
[Termes IGN] désert
[Termes IGN] désertification
[Termes IGN] données météorologiques
[Termes IGN] dune
[Termes IGN] image Landsat-8
[Termes IGN] image optique
[Termes IGN] image Sentinel-MSI
[Termes IGN] incertitude des données
[Termes IGN] modèle d'inversion
[Termes IGN] modèle dynamique
[Termes IGN] prévention des risques
[Termes IGN] sable
[Termes IGN] série temporelle
[Termes IGN] Sinai
[Termes IGN] variation saisonnière
[Termes IGN] vent de sableRésumé : (auteur) Sand dune migration poses a potential threat to desert infrastructure, vegetation, and atmospheric conditions. Capturing the patterns of long-term dune migration is useful for predicting probable desertification issues and wind conditions across vast desert areas. In this study, we employed optical image matching and a singular value decomposition approach to estimate the rates of dune migration in the North Sinai Sand Sea using the free Landsat 8 and Sentinel-2 archives. Our optical image matching time-series selection and inversion (OPTSI) algorithm limited the difference in the solar illumination of correlated pairs to decrease shadows and seasonal variability. We found that the maximum annual dune migration rates were 9.4 m/a and 15.9 m/a for Landsat 8 and Sentinel-2 data, respectively, and the results of time-series analysis revealed the existence of seasonal variations in dune migration controlled by wind regimes. The directions of sand movement extracted from the mean velocity solution agreed strongly with each other and with the drift directions estimated using wind data from meteorological stations. We assessed the uncertainty of each solution based on the variance of stable areas. Our results showed that the proposed inversion decreased uncertainty by up to 25% and increased the spatial coverage by up to 20%. This algorithm is also promising for the retrieval of historical time series on the ground displacements of glaciers and slow-moving landslides employing free archives that provide high-frequency images. Numéro de notice : A2020-253 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.004 Date de publication en ligne : 27/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94997
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 106 - 124[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data / Sugandh Chauhan in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
[article]
Titre : Discriminant analysis for lodging severity classification in wheat using RADARSAT-2 and Sentinel-1 data Type de document : Article/Communication Auteurs : Sugandh Chauhan, Auteur ; Roshanak Darvishzadeh, Auteur ; Mirco Boschetti, Auteur ; Andrew Nelson, Auteur Année de publication : 2020 Article en page(s) : pp 138 - 151 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] agrégation de données
[Termes IGN] analyse diachronique
[Termes IGN] analyse discriminante
[Termes IGN] blé (céréale)
[Termes IGN] courbure
[Termes IGN] gestion prévisionnelle
[Termes IGN] image Radarsat
[Termes IGN] image Sentinel-SAR
[Termes IGN] Italie
[Termes IGN] matrice de confusion
[Termes IGN] méthode des moindres carrés
[Termes IGN] rendement agricole
[Termes IGN] surveillance agricoleRésumé : (auteur) Crop lodging - the bending of crop stems from their upright position or the failure of root-soil anchorage systems - is a major yield-reducing factor in wheat and causes deterioration of grain quality. The severity of lodging can be measured by a lodging score (LS)- an index calculated from the crop angle of inclination (CAI) and crop lodged area (LA). LS is difficult and time consuming to measure manually meaning that information on lodging occurrence and severity is limited and sparse. Remote sensing-based estimates of LS can provide more timely, synoptic and reliable information on crop lodging across vast areas. This information could improve estimates of crop yield losses, inform insurance loss adjusters and influence management decisions for subsequent seasons. This research - conducted in the 600 ha wheat sown area in the Bonifiche Ferraresi farm, located in Jolanda di Savoia, Ferrara, Italy - evaluated the performance of RADARSAT-2 and Sentinel-1 data to discriminate and classify lodging severity based on field measured LS. We measured temporal crop status characteristics related to lodging (e.g. lodged area, CAI, crop height) and collected relevant meteorological data (wind speed and rainfall) throughout May-June 2018. These field measurements were used to distinguish healthy (He) wheat from lodged wheat with different degrees of lodging severity (moderate, severe and very severe). We acquired multi-incidence angle (FQ8-27° and FQ21-41°) RADARSAT-2 and Sentinel-1 (40°) images and derived multiple metrics from them to discriminate and classify lodging severity. As a part of our data exploration, we performed a correlation analysis between the image-based metrics and LS. Next, a multi-temporal discriminant analysis approach, including a partial least squares (PLS-DA) method, was developed to classify lodging severities. We used the area under the curve-receiver operating characteristics (AUC-ROC) and confusion matrices to evaluate the accuracy of the PLS-DA classification models. Results show that (1) volume scattering components were highly correlated with LS at low incidence angles while double and surface scattering was more prevalent at high incidence angles; (2) lodging severity was best classified using low incidence angle R-FQ8 data (overall accuracy 72%) and (3) the Sentinel-1 data-based classification model was able to correctly identify 60% of the lodging severity cases in the study site. The results from this first study on classifying lodging severity using satellite-based SAR platforms suggests that SAR-based metrics can capture a substantial proportion of the observed variation in lodging severity, which is important in the context of operational crop lodging assessment in particular, and sustainable agriculture in general. Numéro de notice : A2020-276 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.012 Date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.012 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95087
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 138 - 151[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt