International Journal of Remote Sensing IJRS / Remote sensing and photogrammetry society . vol 41 n° 3Paru le : 15/01/2020 |
[n° ou bulletin]
est un bulletin de International Journal of Remote Sensing IJRS / Remote sensing and photogrammetry society (1980 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierCombining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods / Liheng Peng in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
[article]
Titre : Combining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods Type de document : Article/Communication Auteurs : Liheng Peng, Auteur ; Kai Liu, Auteur ; Jingjing Cao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 813 - 838 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] boosting adapté
[Termes IGN] Chine, mer de
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] écosystème
[Termes IGN] extraction de la végétation
[Termes IGN] île
[Termes IGN] image Gaofen
[Termes IGN] image RapidEye
[Termes IGN] image satellite
[Termes IGN] mangrove
[Termes IGN] modèle numérique de surface
[Termes IGN] précision de la classification
[Termes IGN] Rotation Forest classificationRésumé : (auteur) Mangrove forests are important constitutions for sustainable development of coastal ecosystems, and they are often mapped and monitored with remote sensing approaches. Satellite images allow detailed studies of the distribution and composition of mangrove forests, and therefore facilitate the management and conservation of the ecosystems. The combination of multiple types of satellite images with different spatial and spectral resolutions is helpful in mangrove forests extraction and mangrove species discrimination as it reduces sampling workload and increases classification accuracies. In this study, the 1.0-m-resolution Gaofen-2 (GF-2) and the 5.0-m-resolution RapidEye-4 (RE-4) satellite images, acquired in February 2017 and November 2016 respectively, were used with ensemble machine-learning and object-oriented methods for mangroves mapping at both the community and species levels of the Qi’ao Island, Zhuhai, China. First, the mangroves on the island were segmented from the GF-2 image on a large scale, and then they were extracted combining with their digital elevation model (DEM) data. Second, the GF-2 image was further processed on a fine scale, in which object-oriented features from both the GF-2 and RE-4 images were extracted for each mangrove species. Third, it is followed by the mangrove species classification process which involves three ensemble machine-learning methods: the adaptive boosting (AdaBoost), the random forest (RF) and the rotation forest (RoF). These three methods employed a classification and regression tree (CART) as the base classifier. The results show that the overall accuracy (OA) of mangrove area extraction on the Qi’ao Island with the auxiliary data, DEM, achieves 98.76% (Kappa coefficient (κ) = 0.9289). The features extracted by the GF-2 and RE-4 images were shown to be beneficial for mangrove species discrimination. A maximum improvement in the OA of approximately 8% and a κκ of approximately 0.10 were achieved when employing RoF (OA = 92.01%, κ = 0.9016). Ensemble-learning methods can significantly improve the classification accuracy of CART, and the use of a bagging scheme (RF and RoF) is shown as a better way to map mangrove species than adaptive boosting (AdaBoost). In addition, RoF performed well in mangrove species classification but it was not as robust as the RF, whose average OA and κκ were 80.59% and 0.7608, respectively, while the RoF’s were 77.45% and 0.7214, respectively, in the 10-fold cross-validation. Numéro de notice : A2020-212 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01431161.2019.1648907 Date de publication en ligne : 30/07/2019 En ligne : https://doi.org/10.1080/01431161.2019.1648907 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94897
in International Journal of Remote Sensing IJRS > vol 41 n° 3 (15 - 22 janvier 2020) . - pp 813 - 838[article]Extracting soil salinization information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model / Xiaoping Wang in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
[article]
Titre : Extracting soil salinization information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model Type de document : Article/Communication Auteurs : Xiaoping Wang, Auteur ; Fei Zhang, Auteur ; Hsiang-Te Kung, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 953 - 973 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] algorithme de filtrage
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] état du sol
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Sentinel-MSI
[Termes IGN] sel
[Termes IGN] sol salin
[Termes IGN] zone sècheRésumé : (auteur) The remote sensing information on the extraction method is of great importance to improve the accuracy and efficiency of soil salinization information. The objective of this study is to develop remote sensing extraction techniques to improve soil salinization maps. The following procedures were used in this study: (1) developed a fractional-order algorithm-based methodology of filter from high-resolution remote sensing imagery (Sentinel-2 MSI); (2) investigated the changing trend of image under different order filters; and (3) used a grid-search algorithm-support vector machines (GS-SVM) classification to employ extraction information of soil salinization. The results showed that the Fractional-order filter method outperformed the integer derivative in extracted information of soil salinization. In comparison of the classification accuracy between fractional-order processing algorithm and integer-order image processing algorithm, the fractional order has improved remarkably. The optimal classification model was 0.6 order, 0.8 order, 1.4 order, 1.6 order, and 1.8 order models. The overall accuracy and kappa coefficient (κ) of these models are 91.90% and 0.90, respectively. Analysing and comparing between soil salt index and filtering algorithm (1.2 order), the researchers found that the classification results of the two methods are similar. In general, this method can successfully extract soil salinization information in dry regions. Numéro de notice : A2020-213 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01431161.2019.1654142 Date de publication en ligne : 14/08/2019 En ligne : https://doi.org/10.1080/01431161.2019.1654142 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94898
in International Journal of Remote Sensing IJRS > vol 41 n° 3 (15 - 22 janvier 2020) . - pp 953 - 973[article]A restrictive polymorphic ant colony algorithm for the optimal band selection of hyperspectral remote sensing images / Xiaohui Ding in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
[article]
Titre : A restrictive polymorphic ant colony algorithm for the optimal band selection of hyperspectral remote sensing images Type de document : Article/Communication Auteurs : Xiaohui Ding, Auteur ; Shuqing Zhang, Auteur ; Huapeng Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1093 - 1117 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] bande spectrale
[Termes IGN] image hyperspectrale
[Termes IGN] jeu de données
[Termes IGN] optimisation par colonie de fourmis
[Termes IGN] précision de la classification
[Termes IGN] test de performanceRésumé : (auteur) With hundreds of spectral bands, the rise of the issue of dimensionality in the classification of hyperspectral images is usually inevitable. In this paper, a restrictive polymorphic ant colony algorithm (RPACA) based band selection algorithm (RPACA-BS) was proposed to reduce the dimensionality of hyperspectral images. In the proposed algorithm, both local and global searches were conducted considering band similarity. Moreover, the problem of falling into local optima, due to the selection of similar band subsets although travelling different paths, was solved by varying the pheromone matrix between ants moving in opposite directions. The performance of the proposed RPACA-BS algorithm was evaluated using three public datasets (the Indian Pines, Pavia University and Botswana datasets) based on average overall classification accuracy (OA) and CPU processing time. The experimental results showed that average OA of RPACA-BS was up to 89.80%, 94.96% and 92.17% for the Indian Pines, Pavia University and Botswana dataset, respectively, which was higher than that of the benchmarks, including the ant colony algorithm-based band selection algorithm (ACA-BS), polymorphic ant colony algorithm-based band selection algorithm (PACA-BS) and other band selection methods (e.g. the ant lion optimizer-based band selection algorithm). Meanwhile, the time consumed by RPACA-BS and PACA-BS were slightly lower than that of ACA-BS but obviously lower than that of other benchmarks. The proposed RPACA-BS method is thus able to effectively enhance the search abilities and efficiencies of the ACA-BS and PACA-BS algorithms to handle the complex band selection issue for hyperspectral remotely sensed images. Numéro de notice : A2020-214 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01431161.2019.1655810 Date de publication en ligne : 20/08/2019 En ligne : https://doi.org/10.1080/01431161.2019.1655810 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94899
in International Journal of Remote Sensing IJRS > vol 41 n° 3 (15 - 22 janvier 2020) . - pp 1093 - 1117[article]