Remote sensing . vol 12 n° 1Paru le : 01/01/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierPredicting carbon accumulation in temperate forests of Ontario, Canada using a LiDAR-initialized growth-and-yield model / Paulina T. Marczak in Remote sensing, vol 12 n° 1 (January 2020)
[article]
Titre : Predicting carbon accumulation in temperate forests of Ontario, Canada using a LiDAR-initialized growth-and-yield model Type de document : Article/Communication Auteurs : Paulina T. Marczak, Auteur ; Karin Y. Van Ewijk, Auteur ; Paul M. Treitz, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 29 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] changement climatique
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] diamètre des arbres
[Termes IGN] données lidar
[Termes IGN] forêt tempérée
[Termes IGN] modèle de croissance végétale
[Termes IGN] Ontario (Canada)
[Termes IGN] peuplement forestier
[Termes IGN] photo-interprétation
[Termes IGN] puits de carbone
[Termes IGN] rendement
[Termes IGN] semis de pointsRésumé : (auteur) Climate warming has led to an urgent need for improved estimates of carbon accumulation in uneven-aged, mixed temperate forests, where high uncertainty remains. We investigated the feasibility of using LiDAR-derived forest attributes to initialize a growth and yield (G&Y) model in complex stands at the Petawawa Research Forest (PRF) in eastern Ontario, Canada; i.e., can G&Y models based on LiDAR provide accurate predictions of aboveground carbon accumulation in complex forests compared to traditional inventory-based estimates? Applying a local G&Y model, we forecasted aboveground carbon stock (tons/ha) and accumulation (tons/ha/yr) using recurring plot measurements from 2012–2016, FVS1. We applied statistical predictors derived from LiDAR to predict stem density (SD), stem diameter distribution (SDD), and basal area distribution (BA_dist). These data, along with measured species abundance, were used to initialize a second model (FVS2). A third model was tested using LiDAR-initialized tree lists and photo-interpreted estimates of species abundance (i.e., FVS3). The carbon stock projections for 2016 from the inventory-based G&Y model) were equivalent to validation carbon stocks measured in 2016 at all size-class levels (p 0.05). At the plot level, LiDAR-based predictions of carbon accumulation over a nine-year period did not differ when using either inventory or photo-interpreted species (p Numéro de notice : A2020-222 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12010201 Date de publication en ligne : 06/01/2020 En ligne : https://doi.org/10.3390/rs12010201 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94934
in Remote sensing > vol 12 n° 1 (January 2020) . - 29 p.[article]Combination of linear regression lines to understand the response of Sentinel-1 dual polarization SAR data with crop phenology - case study in Miyazaki, Japan / Emal Wali in Remote sensing, vol 12 n° 1 (January 2020)
[article]
Titre : Combination of linear regression lines to understand the response of Sentinel-1 dual polarization SAR data with crop phenology - case study in Miyazaki, Japan Type de document : Article/Communication Auteurs : Emal Wali, Auteur ; Masahiro Tasumi, Auteur ; Masao Moriyama, Auteur Année de publication : 2020 Article en page(s) : 17 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice foliaire
[Termes IGN] Japon
[Termes IGN] polarisation
[Termes IGN] régression linéaire
[Termes IGN] rizière
[Termes IGN] surveillance agricole
[Termes IGN] variable biophysique (végétation)Résumé : (auteur) This study investigated the relationship between backscattering coefficients of a synthetic aperture radar (SAR) and the four biophysical parameters of rice crops—plant height, green vegetation cover, leaf area index, and total dry biomass. A paddy rice field in Miyazaki, Japan was studied from April to July of 2018, which is the rice cultivation season. The SAR backscattering coefficients were provided by Sentinel-1 satellite. Backscattering coefficients of two polarization settings—VH (vertical transmitting, horizontal receiving) and VV (vertical transmitting, vertical receiving)—were investigated. Plant height, green vegetation cover, leaf area index, and total dry biomass were measured at ground level, on the same dates as satellite image acquisition. Polynomial regression lines indicated relationships between backscattering coefficients and plant biophysical parameters of the rice crop. The biophysical parameters had stronger relationship to VH than to VV polarization. A disadvantage of adopting polynomial regression equations is that the equation can have two biophysical parameter solutions for a particular backscattering coefficient value, which prevents simple conversion from backscattering coefficients to plant biophysical parameters. To overcome this disadvantage, the relationships between backscattering coefficients and the plant biophysical parameters were expressed using a combination of two linear regression lines, one line for the first sub-period and the other for the second sub-period during the entire cultivation period. Following this approach, all four plant biophysical parameters were accurately estimated from the SAR backscattering coefficient, especially with VH polarization, from the date of transplanting to about two months, until the mid-reproductive stage. However, backscattering coefficients saturate after two months from the transplanting, and became insensitive to the further developments in plant biophysical parameters. This research indicates that SAR can effectively and accurately monitor rice crop biophysical parameters, but only up to the mid reproductive stage. Numéro de notice : A2020-223 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12010189 Date de publication en ligne : 05/01/2020 En ligne : https://doi.org/10.3390/rs12010189 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94936
in Remote sensing > vol 12 n° 1 (January 2020) . - 17 p.[article]Uncertainty analysis of remotely-acquired thermal infrared data to extract the thermal Properties of active lava surfaces / James A. Thompson in Remote sensing, vol 12 n° 1 (January 2020)
[article]
Titre : Uncertainty analysis of remotely-acquired thermal infrared data to extract the thermal Properties of active lava surfaces Type de document : Article/Communication Auteurs : James A. Thompson, Auteur ; Michael S. Ramsey, Auteur Année de publication : 2020 Article en page(s) : 21 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Advanced Spaceborne Thermal Emission and Reflection Radiometer
[Termes IGN] classification pixellaire
[Termes IGN] éruption volcanique
[Termes IGN] image MASTER
[Termes IGN] image thermique
[Termes IGN] incertitude des données
[Termes IGN] Kilauea (volcan)
[Termes IGN] lave
[Termes IGN] rayonnement infrarouge thermique
[Termes IGN] surveillance géologique
[Termes IGN] température
[Termes IGN] volcanRésumé : (auteur) Using thermal infrared (TIR) data from multiple instruments and platforms for analysis of an entire active volcanic system is becoming more common with the increasing availability of new data. However, the accuracy and uncertainty associated with these combined datasets are poorly constrained over the full range of eruption temperatures and possible volcanic products. Here, four TIR datasets acquired over active lava surfaces are compared to quantify the uncertainty, accuracy, and variability in derived surface radiance, emissivity, and kinetic temperature. These data were acquired at Kīlauea volcano in Hawai’i, USA, in January/February 2017 and 2018. The analysis reveals that spatial resolution strongly limits the accuracy of the derived surface thermal properties, resulting in values that are significantly below the expected values for molten basaltic lava at its liquidus temperature. The surface radiance is ~2400% underestimated in the orbital data compared to only ~200% in ground-based data. As a result, the surface emissivity is overestimated and the kinetic temperature is underestimated by at least 30% and 200% in the airborne and orbital datasets, respectively. A thermal mixed pixel separation analysis is conducted to extract only the molten fraction within each pixel in an attempt to mitigate this complicating factor. This improved the orbital and airborne surface radiance values to within 15% of the expected values and the derived emissivity and kinetic temperature within 8% and 12%, respectively. It is, therefore, possible to use moderate spatial resolution TIR data to derive accurate and reliable emissivity and kinetic temperatures of a molten lava surface that are comparable to the higher resolution data from airborne and ground-based instruments. This approach, resulting in more accurate kinetic temperature and emissivity of the active surfaces, can improve estimates of flow hazards by greatly improving lava flow propagation models that rely on these data. Numéro de notice : A2020-224 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12010193 Date de publication en ligne : 05/01/2020 En ligne : https://doi.org/10.3390/rs12010193 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94939
in Remote sensing > vol 12 n° 1 (January 2020) . - 21 p.[article]Regional-scale forest mapping over fragmented landscapes using global forest products and Landsat time series classification / Viktor Myroniuk in Remote sensing, vol 12 n° 1 (January 2020)
[article]
Titre : Regional-scale forest mapping over fragmented landscapes using global forest products and Landsat time series classification Type de document : Article/Communication Auteurs : Viktor Myroniuk, Auteur ; Mykola Kutia, Auteur ; Arbi J. Sarkissian, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 24 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande infrarouge
[Termes IGN] carte forestière
[Termes IGN] changement climatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Google Earth Engine
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] image satellite
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] plaine
[Termes IGN] série temporelle
[Termes IGN] surveillance forestière
[Termes IGN] UkraineRésumé : (auteur) Satellite imagery of 25–30 m spatial resolution has been recognized as an effective tool for monitoring the spatial and temporal dynamics of forest cover at different scales. However, the precise mapping of forest cover over fragmented landscapes is complicated and requires special consideration. We have evaluated the performance of four global forest products of 25–30 m spatial resolution within three flatland subregions of Ukraine that have different forest cover patterns. We have explored the relationship between tree cover extracted from the global forest change (GFC) and relative stocking density of forest stands and justified the use of a 40% tree cover threshold for mapping forest in flatland Ukraine. In contrast, the canopy cover threshold for the analogous product Landsat tree cover continuous fields (LTCCF) is found to be 25%. Analysis of the global forest products, including discrete forest masks Global PALSAR-2/PALSAR Forest/Non-Forest Map (JAXA FNF) and GlobeLand30, has revealed a major misclassification of forested areas under severe fragmentation patterns of landscapes. The study also examined the effectiveness of forest mapping over fragmented landscapes using dense time series of Landsat images. We collected 1548 scenes of Landsat 8 Operational Land Imager (OLI) for the period 2014–2016 and composited them into cloudless mosaics for the following four seasons: yearly, summer, autumn, and April–October. The classification of images was performed in Google Earth Engine (GEE) Application Programming Interface (API) using random forest (RF) classifier. As a result, 30 m spatial resolution forest mask for flatland of Ukraine was created. The user’s and producer’s accuracy were estimated to be 0.910 ± 0.015 and 0.880 ± 0.018, respectively. The total forest area for the flatland Ukraine is 9440.5 ± 239.4 thousand hectares, which is 3% higher than official data. In general, we conclude that the Landsat-derived forest mask performs well over fragmented landscapes if forest cover of the territory is higher than 10–15% Numéro de notice : A2020-225 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs12010187 Date de publication en ligne : 05/01/2020 En ligne : https://doi.org/10.3390/rs12010187 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94940
in Remote sensing > vol 12 n° 1 (January 2020) . - 24 p.[article]Simulation and analysis of photogrammetric UAV image blocks - Influence of camera calibration error / Yilin Zhou in Remote sensing, vol 12 n° 1 (January 2020)
[article]
Titre : Simulation and analysis of photogrammetric UAV image blocks - Influence of camera calibration error Type de document : Article/Communication Auteurs : Yilin Zhou , Auteur ; Ewelina Rupnik , Auteur ; Christophe Meynard , Auteur ; Christian Thom , Auteur ; Marc Pierrot-Deseilligny , Auteur Année de publication : 2020 Projets : 1-Pas de projet / Article en page(s) : n° 22 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] bloc d'images
[Termes IGN] compensation par faisceaux
[Termes IGN] effet thermique
[Termes IGN] étalonnage de chambre métrique
[Termes IGN] image captée par drone
[Termes IGN] obturateur
[Termes IGN] prise de vue aérienneRésumé : (auteur) Unmanned aerial vehicles (UAV) are increasingly used for topographic mapping. The camera calibration for UAV image blocks can be performed a priori or during the bundle block adjustment (self-calibration). For an area of interest with flat scene and corridor configuration, the focal length of camera is highly correlated with the height of the camera. Furthermore, systematic errors of camera calibration accumulate on the longer dimension and cause deformation. Therefore, special precautions must be taken when estimating camera calibration parameters. In order to better investigate the impact of camera calibration errors, a synthetic, error-free aerial image block is generated to simulate several issues of interest. Firstly, the erroneous focal length in the case of camera pre-calibration is studied. Nadir images are not able to prevent camera poses from drifting to compensate for the erroneous focal length, whereas the inclusion of oblique images brings significant improvement. Secondly, the case where the focal length varies gradually (e.g., when the camera subject to temperature changes) is investigated. The neglect of this phenomenon can substantially degrade the 3D measurement accuracy. Different flight configurations and flight orders are analyzed, the combination of oblique and nadir images shows better performance. At last, the rolling shutter effect is investigated. The influence of camera rotational motion on the final accuracy is negligible compared to that of the translational motion. The acquisition configurations investigated are not able to mitigate the degradation introduced by the rolling shutter effect. Other solutions such as correcting image measurements or including camera motion parameters in the bundle block adjustment should be exploited. Numéro de notice : A2020-415 Affiliation des auteurs : LASTIG MATIS (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs12010022 Date de publication en ligne : 19/12/2019 En ligne : https://doi.org/10.3390/rs12010022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95503
in Remote sensing > vol 12 n° 1 (January 2020) . - n° 22[article]