IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) . vol 58 n° 5Paru le : 01/05/2020 |
[n° ou bulletin]
est un bulletin de IEEE Transactions on geoscience and remote sensing / IEEE Geoscience and remote sensing society (Etats-Unis) (1986 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA point cloud feature regularization method by fusing judge criterion of field force / Xijiang Chen in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : A point cloud feature regularization method by fusing judge criterion of field force Type de document : Article/Communication Auteurs : Xijiang Chen, Auteur ; Qing Liu, Auteur ; Kegen Yu, Auteur Année de publication : 2020 Article en page(s) : pp 2994 - 3006 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse vectorielle
[Termes IGN] arbre BSP
[Termes IGN] détection de contours
[Termes IGN] échantillonnage
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] matrice de covariance
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation du bâti
[Termes IGN] niveau de gris (image)
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] reconstruction d'objet
[Termes IGN] semis de points
[Termes IGN] spline cubique
[Termes IGN] traitement d'image
[Termes IGN] transformation de Hough
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Point cloud boundary is an important part of the surface model. The traditional feature extraction method has slow speed and low efficiency and only achieves the boundary feature points. Hence, the point cloud feature regularization is proposed to obtain the boundary lines based on the fast extraction of feature points in this article. First, an improved $k$ - $d$ tree method is used to search the $k$ neighbors of sampling point. Then, the sampling point and its $k$ neighbors are used as the reference points set to fit a microcut plane and project to the plane. The local coordinate system is established on the microcut plane to convert 3-D into 2-D. The boundary feature points are identified by judging criterion of field force and then are sorted and connected according to the vector deflected angle and distance. Finally, the boundary lines are smoothed by the improved cubic B-spline fitting method. Experiments show that the proposed method can extract the boundary feature points quickly and efficiently, and the mean error of boundary lines is 0.0674 mm and the standard deviation is 0.0346 mm, which has high precision. This proposed method was also successfully applied to feature extraction and boundary fitting of Xinyi teaching building of the Wuhan University of Technology. Numéro de notice : A2020-230 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2946326 Date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2946326 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94968
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 2994 - 3006[article]An integrated approach to registration and fusion of hyperspectral and multispectral images / Yuan Zhou in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : An integrated approach to registration and fusion of hyperspectral and multispectral images Type de document : Article/Communication Auteurs : Yuan Zhou, Auteur ; Anand Rangarajan, Auteur ; Paul D. Gader, Auteur Année de publication : 2020 Article en page(s) : pp 3020 - 3033 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] algorithme de fusion
[Termes IGN] distorsion d'image
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] méthode des moindres carrés
[Termes IGN] points registration
[Termes IGN] tâche image d'un pointRésumé : (auteur) Combining a hyperspectral (HS) image and a multispectral (MS) image—an example of image fusion—can result in a spatially and spectrally high-resolution image. Despite the plethora of fusion algorithms in remote sensing, a necessary prerequisite, namely registration, is mostly ignored. This limits their application to well-registered images from the same source. In this article, we propose and validate an integrated registration and fusion approach (code available at https://github.com/zhouyuanzxcv/Hyperspectral ). The registration algorithm minimizes a least-squares (LSQ) objective function with the point spread function (PSF) incorporated together with a nonrigid freeform transformation applied to the HS image and a rigid transformation applied to the MS image. It can handle images with significant scale differences and spatial distortion. The fusion algorithm takes the full high-resolution HS image as an unknown in the objective function. Assuming that the pixels lie on a low-dimensional manifold invariant to local linear transformations from spectral degradation, the fusion optimization problem leads to a closed-form solution. The method was validated on the Pavia University, Salton Sea, and the Mississippi Gulfport datasets. When the proposed registration algorithm is compared to its rigid variant and two mutual information-based methods, it has the best accuracy for both the nonrigid simulated dataset and the real dataset, with an average error less than 0.15 pixels for nonrigid distortion of maximum 1 HS pixel. When the fusion algorithm is compared with current state-of-the-art algorithms, it has the best performance on images with registration errors as well as on simulations that do not consider registration effects. Numéro de notice : A2020-231 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2941494 Date de publication en ligne : 12/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2941494 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94969
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3020 - 3033[article]Improved supervised learning-based approach for leaf and wood classification from LiDAR point clouds of forests / Sruthi M. Krishna Moorthy in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : Improved supervised learning-based approach for leaf and wood classification from LiDAR point clouds of forests Type de document : Article/Communication Auteurs : Sruthi M. Krishna Moorthy, Auteur ; Kim Calders, Auteur ; Matheus B. Vicari, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3057 - 3070 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage dirigé
[Termes IGN] atmosphère terrestre
[Termes IGN] canopée
[Termes IGN] classification dirigée
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données lidar
[Termes IGN] faisceau laser
[Termes IGN] feuille (végétation)
[Termes IGN] foresterie
[Termes IGN] forêt de feuillus
[Termes IGN] forêt tropicale
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] précision de la classification
[Termes IGN] Python (langage de programmation)
[Termes IGN] semis de points
[Termes IGN] transfert radiatifRésumé : (auteur) Accurately classifying 3-D point clouds into woody and leafy components has been an interest for applications in forestry and ecology including the better understanding of radiation transfer between canopy and atmosphere. The past decade has seen an increase in the methods attempting to classify leaves and wood in point clouds based on radiometric or geometric features. However, classification purely based on radiometric features is sensor-specific, and the method by which the local neighborhood of a point is defined affects the accuracy of classification based on geometric features. Here, we present a leaf-wood classification method combining geometrical features defined by radially bounded nearest neighbors at multiple spatial scales in a machine learning model. We compared the performance of three different machine learning models generated by the random forest (RF), XGBoost, and lightGBM algorithms. Using multiple spatial scales eliminates the need for an optimal neighborhood size selection and defining the local neighborhood by radially bounded nearest neighbors makes the method broadly applicable for point clouds of varying quality. We assessed the model performance at the individual tree- and plot-level on field data from tropical and deciduous forests, as well as on simulated point clouds. The method has an overall average accuracy of 94.2% on our data sets. For other data sets, the presented method outperformed the methods in literature in most cases without the need for additional postprocessing steps that are needed in most of the existing methods. We provide the entire framework as an open-source python package. Numéro de notice : A2020-232 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947198 Date de publication en ligne : 31/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947198 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94970
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3057 - 3070[article]Footprint determination of a spectroradiometer mounted on an unmanned aircraft system / Deepak Gautam in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : Footprint determination of a spectroradiometer mounted on an unmanned aircraft system Type de document : Article/Communication Auteurs : Deepak Gautam, Auteur ; Arko Lucieer, Auteur ; Juliane Bendig, Auteur Année de publication : 2020 Article en page(s) : pp 3085 - 3096 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] canopée
[Termes IGN] capteur aérien
[Termes IGN] carte de la végétation
[Termes IGN] chlorophylle
[Termes IGN] classification pixellaire
[Termes IGN] drone
[Termes IGN] échantillonnage
[Termes IGN] empreinte
[Termes IGN] fluorescence
[Termes IGN] géoréférencement
[Termes IGN] photosynthèse
[Termes IGN] point d'appui
[Termes IGN] réflectance spectrale
[Termes IGN] signature spectrale
[Termes IGN] spectroradiomètreRésumé : (auteur) Unmanned aircraft system (UAS)-mounted spectroradiometers offer a new capability to measure spectral reflectance and solar-induced chlorophyll fluorescence at detailed canopy scales. This capability offers potential for upscaling and comparison with airborne and space-borne observations [e.g., the upcoming European Space Agency (ESA) Fluorescence Explorer (FLEX) satellite mission]. In this respect, the accurate spatial characterization and georeferencing of the UAS acquisition footprints are essential to unravel the origin and spatial variability of optical signals acquired within the extent of airborne/satellite pixels. In this article, we present and validate a novel algorithm to georeference the footprint extent of a nonimaging spectroradiometer mounted on a multirotor UAS platform. We used information about the spectroradiometer position and orientation during flight and about topography of observed terrain to calculate the footprint geolocation. In a recursive process, the field of view (FOV) of the spectroradiometer projected on the ground. Multiple FOV ground projections retrieved during a spectroradiometer reading (i.e., a single integration time) were aggregated to calculate the footprint extent. The spatial accuracy of the footprint geolocation was validated by applying the georeferencing algorithm on checkpoint pixels of image acquired with a comounted digital camera. Geolocations of the checkpoint pixels, which served as a proxy for the spectroradiometer footprint, were successfully compared with surveyed ground checkpoints. Finally, the spectral and radiometric quality of UAS-acquired reflectance signatures was compared with ground-measured reflectance of four natural targets (three different types of grass and a bare soil), and a strong agreement was observed. Numéro de notice : A2020-233 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947703 Date de publication en ligne : 06/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947703 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94978
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3085 - 3096[article]A convolutional neural network with mapping layers for hyperspectral image classification / Rui Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : A convolutional neural network with mapping layers for hyperspectral image classification Type de document : Article/Communication Auteurs : Rui Li, Auteur ; Zhibin Pan, Auteur ; Yang Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3136 - 3147 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algèbre linéaire
[Termes IGN] analyse discriminante
[Termes IGN] analyse en composantes principales
[Termes IGN] analyse multidimensionnelle
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couche thématique
[Termes IGN] dispersion
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] réductionRésumé : (auteur) In this article, we propose a convolutional neural network with mapping layers (MCNN) for hyperspectral image (HSI) classification. The proposed mapping layers map the input patch into a low-dimensional subspace by multilinear algebra. We use our mapping layers to reduce the spectral and spatial redundancies and maintain most energy of the input. The feature extracted by our mapping layers can also reduce the number of following convolutional layers for feature extraction. Our MCNN architecture avoids the declining accuracy with increasing layers phenomenon of deep learning models for HSI classification and also saves the training time for its effective mapping layers. Furthermore, we impose the 3-D convolutional kernel on the convolutional layer to extract the spectral–spatial features for HSI. We tested our MCNN on three data sets of Indian Pines, University of Pavia, and Salinas, and we achieved the classification accuracy of 98.3%, 99.5%, and 99.3%, respectively. Experimental results demonstrate that the proposed MCNN can significantly improve classification accuracy and save much time consumption. Numéro de notice : A2020-234 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2948865 Date de publication en ligne : 12/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2948865 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94980
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3136 - 3147[article]Soil moisture estimation with SVR and data augmentation based on alpha approximation method / Wei Xu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : Soil moisture estimation with SVR and data augmentation based on alpha approximation method Type de document : Article/Communication Auteurs : Wei Xu, Auteur ; Zhaoxu Zhang, Auteur ; Qiming Qin, Auteur Année de publication : 2020 Article en page(s) : pp 3190 - 3201 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] approximation
[Termes IGN] erreur moyenne quadratique
[Termes IGN] humidité du sol
[Termes IGN] image ALOS
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] irrigation
[Termes IGN] modèle de régression
[Termes IGN] surveillance agricoleRésumé : (auteur) Soil moisture content is an important parameter in hydrological, meteorological, and agricultural applications. Balenzano et al. proposed the alpha approximation method in 2011 for solving some complex issues during the retrieval of soil moisture over agricultural crops with synthetic aperture radar data. However, determining the constraints and solving the underdetermined system of equations in this method add new challenges. Considering the questions of constraints and underdetermined system of equations, the alpha approximation method is used to augment the measured data, and can avoid solving the underdetermined system of equations with constraints directly. Then, these data are applied in a support vector regression machine for soil moisture estimation. It is found that when an optimal model is determined, the method proposed in this article is superior to the direct use of the alpha approximation method, and the root-mean-squared error (RMSE) decreased from 0.0775 to 0.0339 and R 2 increased from 0.0467 to 0.6491. In addition, the method obtained a good result from a data set collected that included a different growing period of crops by changing the standardized method from StandardScaler to Scale , where the RMSE is 0.0501 and R 2 is 0.3204. This indicates the good generalization capability of this method. In conclusion, the proposed method solves the two questions effectively and provides a potential way for long-time or large-scale soil moisture monitoring with much less in situ measurements. Numéro de notice : A2020-235 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2950321 Date de publication en ligne : 26/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2950321 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94981
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3190 - 3201[article]Tephra mass eruption rate from ground-based X-band and L-band microwave radars during the November 23, 2013, Etna Paroxysm / Frank S. Marzano in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : Tephra mass eruption rate from ground-based X-band and L-band microwave radars during the November 23, 2013, Etna Paroxysm Type de document : Article/Communication Auteurs : Frank S. Marzano, Auteur ; Luigi Mereu, Auteur ; Simona Scollo, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3314 - 3327 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] bande L
[Termes IGN] bande X
[Termes IGN] capteur terrestre
[Termes IGN] éruption volcanique
[Termes IGN] Etna (volcan)
[Termes IGN] lave
[Termes IGN] masse
[Termes IGN] micro-onde
[Termes IGN] radar à antenne synthétique
[Termes IGN] rayonnement infrarouge thermique
[Termes IGN] surveillance géologique
[Termes IGN] volcanologieRésumé : (auteur) The morning of November 23, 2013, a lava fountain formed from the New South-East Crater (NSEC) of Mt. Etna (Italy), one of the most active volcanoes in Europe. The explosive activity was observed from two ground-based radars, the X-band polarimetric scanning and the L-band Doppler fixed-pointing, as well as from a thermal-infrared camera. Taking advantage of the capability of the microwave radars to probe the volcanic plume and extending the volcanic ash radar retrieval (VARR) methodology, we estimate the mass eruption rate (MER) using three main techniques, namely surface-flux approach (SFA), mass continuity-based approach (MCA), and top-plume approach (TPA), as well as provide a quantitative evaluation of their uncertainty. Estimated exit velocities are between 160 and 230 m/s in the paroxysmal phase. The intercomparison between the SFA, MCA, and TPA methods, in terms of retrieved MER, shows a fairly good consistency with values up to $2.4\times 10^{6}$ kg/s. The estimated total erupted mass (TEM) is $3.8\times 10^{9}$ , $3.9\times 10^{9}$ , and $4.7\times 10^{9}$ kg for SFA with L-band, X-band, and thermal-infrared camera, respectively. Estimated TEM is between $1.7\times 10^{9}$ kg and $4.3\times 10^{9}$ for TPA methods and $3.9\times 10^{9}$ kg for the MCA technique. The SFA, MCA, and TPA results for TEM are in fairly good agreement with independent evaluations derived from ground collection of tephra deposit and estimated to be between $1.3\,\,\pm \,\,1.1\times 10^{9}$ and $5.7\times 10^{9}$ kg. This article shows that complementary strategies of ground-based remote sensing systems can provide an accurate real-time monitoring of a volcanic explosive activity. Numéro de notice : A2020-236 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2953167 Date de publication en ligne : 23/12/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2953167 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94982
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3314 - 3327[article]Saliency-guided single shot multibox detector for target detection in SAR images / Lan Du in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
[article]
Titre : Saliency-guided single shot multibox detector for target detection in SAR images Type de document : Article/Communication Auteurs : Lan Du, Auteur ; Lu Li, Auteur ; Di Wei, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 3366 - 3376 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de cible
[Termes IGN] fusion de données
[Termes IGN] image radar moirée
[Termes IGN] saillanceRésumé : (auteur) The single shot multibox detector (SSD), a proposal-free method based on convolutional neural network (CNN), has recently been proposed for target detection and has found applications in synthetic aperture radar (SAR) images. Moreover, the saliency information reflected in the saliency map can highlight the target of interest while suppressing clutter, which is beneficial for better scene understanding. Therefore, in this article, we propose a saliency-guided SSD (S-SSD) for target detection in SAR images, in which we effectively integrate the saliency into the SSD network not only to suggest where to focus on but also to improve the representation capability in complex scenes. The proposed S-SSD contains two separated convolutional backbone subnetwork architectures, one with the original SAR image as input to extract features, and the other with the corresponding saliency map obtained from the modified Itti’s method as input to acquire refined saliency information under supervision. In addition, the dense connection structure, instead of the plain structure used in original SSD, is applied in the two convolutional backbone architectures to utilize multiscale information with fewer parameters. Then, for integrating saliency information to guide the network to emphasize informative regions, multilevel fusion modules are utilized to merge the two streams into a unified framework, thereby making the whole network end-to-end jointly trained. Finally, the convolutional predictors are used to predict targets. The experimental results on the miniSAR real data demonstrate that the proposed S-SSD can achieve better detection performance than state-of-the-art methods. Numéro de notice : A2020-237 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2953936 Date de publication en ligne : 11/12/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2953936 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94983
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3366 - 3376[article]