[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierAbove-ground biomass estimation of arable crops using UAV-based SfM photogrammetry / Maria Luz Gil-Docampo in Geocarto international, vol 35 n° 7 ([15/05/2020])
[article]
Titre : Above-ground biomass estimation of arable crops using UAV-based SfM photogrammetry Type de document : Article/Communication Auteurs : Maria Luz Gil-Docampo, Auteur ; Marcos Arza-García, Auteur ; Juan Ortiz-Sanz, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 687 - 699 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] acquisition d'images
[Termes IGN] agronomie
[Termes IGN] biomasse
[Termes IGN] image à très haute résolution
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle numérique de terrain
[Termes IGN] photogrammétrie aérienne
[Termes IGN] sol arable
[Termes IGN] structure-from-motionRésumé : (Auteur) Methods of estimating the total amount of above-ground biomass (AGB) in crop fields are generally based on labourious, random, and destructive in situ sampling. This study proposes a methodology for estimating herbaceous crop biomass using conventional optical cameras and structure from motion (SfM) photogrammetry. The proposed method is based on the determination of volumes according to the difference between a digital terrain model (DTM) and digital surface model (DSM) of vegetative cover. A density factor was calibrated based on a subset of destructive random samples to relate the volume and biomass and efficiently quantify the total AGB. In all cases, RMSE Z values less than 0.23 m were obtained for the DTM-DSM coupling. Biomass field data confirmed the goodness of fit of the yield-biomass estimation (R2=0.88 and 1.12 kg/ha) mainly in plots with uniform vegetation coverage. Furthermore, the method was demonstrated to be scalable to multiple platform types and sensors. Numéro de notice : A2020-186 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1552322 Date de publication en ligne : 07/02/2019 En ligne : https://doi.org/10.1080/10106049.2018.1552322 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94993
in Geocarto international > vol 35 n° 7 [15/05/2020] . - pp 687 - 699[article]Methodology of the automatic generalization of buildings, road networks, forests and surface waters: a case study based on the Topographic Objects Database in Poland / Izabela Karsznia in Geocarto international, vol 35 n° 7 ([15/05/2020])
[article]
Titre : Methodology of the automatic generalization of buildings, road networks, forests and surface waters: a case study based on the Topographic Objects Database in Poland Type de document : Article/Communication Auteurs : Izabela Karsznia, Auteur ; Marta Przychodzeń, Auteur ; Karolina Sielicka, Auteur Année de publication : 2020 Article en page(s) : pp 735 - 758 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] ArcGIS
[Termes IGN] base de connaissances
[Termes IGN] base de données orientée objet
[Termes IGN] bâtiment
[Termes IGN] données topographiques
[Termes IGN] eau de surface
[Termes IGN] forêt
[Termes IGN] placement automatique des objets
[Termes IGN] Pologne
[Termes IGN] réseau routier
[Vedettes matières IGN] GénéralisationRésumé : (auteur) This research presents the formalization and verification of the methodology for the automatic generalization of buildings, road networks, forests and surface waters from the Topographic Objects Database (BDOT10k) in Poland. The article makes the following contributions. First, the generalization methodology contained in the official documents was acquired and presented in the form of the knowledge base. Second, the possibilities and limitations of the implementation of the knowledge base in ArcGIS were discussed. Third, the suitability of the BDOT10k structure for the purpose of automatic generalization performance was verified. As a result of the conducted generalization tests, it was found that the formalization and implementation of the methodology contained in the official specifications, in the automatic mode are not entirely possible. The generalization results, however, are promising. The presented research is in line with the studies recently conducted not only by Polish but also other European National Mapping Agencies. Numéro de notice : A2020-271 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1533591 Date de publication en ligne : 03/12/2018 En ligne : https://doi.org/10.1080/10106049.2018.1533591 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95055
in Geocarto international > vol 35 n° 7 [15/05/2020] . - pp 735 - 758[article]A water identification method basing on grayscale Landsat 8 OLI images / Zhitian Deng in Geocarto international, vol 35 n° 7 ([15/05/2020])
[article]
Titre : A water identification method basing on grayscale Landsat 8 OLI images Type de document : Article/Communication Auteurs : Zhitian Deng, Auteur ; Yonghua Sun, Auteur ; Ke Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 700 - 710 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chine
[Termes IGN] correction atmosphérique
[Termes IGN] détection de contours
[Termes IGN] eau de surface
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] Kappa de Cohen
[Termes IGN] niveau de gris (image)
[Termes IGN] Normalized Difference Water Index
[Termes IGN] ressources en eauRésumé : (auteur) Accurate identification of water boundaries is of great significance to water resources surveys. Most water indexes have been designed for different districts and cannot be universally utilized in different regions and, in addition, they rely on atmospheric correction. A new water index, None-Radiation-Calibration Water Index (NRCWI), was constructed by Landsat OLI Band 3 (Green), Band 5 (NIR), and Band 6 (SWIR1), and was compared to the previous method, Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Automated Water Extraction Index (AWEI). We evaluated the accuracy of four water index methods for classifying water in 30-m resolution Landsat 8 OLI imagery from the Bohai Sea Rim in China, which takes in a broad assortment of features including sea and coastline, lakes, rivers, man-made water features, and mountains (shadow water). The following outcomes were obtained: 1. The overall accuracy of NRCWI was 95.23%, which is higher than NDWI, MNDWI, AWEI; 2. The leakage error of NRCWI was 5.48%, the misclassification error was 6.15%, and it implies that the error of NRCWI was effected decrease; 3. NRCWI had the highest kappa coefficient in lakes, rivers, man-made waters, mountains, and other ground features, which means that the method can reach a high accuracy in case 2 water which is principally situated in the near shore, estuary and so on; 4. In the applicability study, the kappa values of NRCWI were 89.99% (OLI), 87.36% (ETM+), 87.33% (TM), and 81.20% (Sentinel-2 MSI). Overall, the NRCWI method performed the best, with the highest accuracy and the lowest leakage error, which may be useful in OLI, ETM+, and TM imagery. Numéro de notice : A2020-272 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1552324 Date de publication en ligne : 14/06/2019 En ligne : https://doi.org/10.1080/10106049.2018.1552324 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95056
in Geocarto international > vol 35 n° 7 [15/05/2020] . - pp 700 - 710[article]