Paru le : 01/06/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierAn empirical study on the intra-urban goods movement patterns using logistics big data / Pengxiang Zhao in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
[article]
Titre : An empirical study on the intra-urban goods movement patterns using logistics big data Type de document : Article/Communication Auteurs : Pengxiang Zhao, Auteur ; Wenzhong Shi, Auteur ; Tao Jia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1089 - 1116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] analyse systémique
[Termes IGN] fret
[Termes IGN] gestion urbaine
[Termes IGN] Hong-Kong
[Termes IGN] interaction spatiale
[Termes IGN] logistique
[Termes IGN] objet mobile
[Termes IGN] origine - destination
[Termes IGN] plan de déplacement urbain
[Termes IGN] réseau de transport
[Termes IGN] série temporelle
[Termes IGN] trafic urbainRésumé : (auteur) Movement patterns of intra-urban goods/things and the ways they differ from human mobility and traffic flow patterns have seldom been explored due to data access and methodological limitations, especially from systemic and long timescale perspectives. However, urban logistics big data are increasingly available, enabling unprecedented spatial and temporal resolutions to this issue. This research proposes an analytical framework for exploring intra-urban goods movement patterns by integrating spatial analysis, network analysis and spatial interaction analysis. Using daily urban logistics big data (over 10 million orders) provided by the largest online logistics company in Hong Kong (GoGoVan) from 2014 to 2016, we analyzed two spatial characteristics (displacement and direction) of urban goods movement. Results showed that the distribution of goods displaceFower law or exponential distribution of human mobility trends. The origin–destination flows of goods were used to build a spatially embedded network, revealing that Hong Kong became increasingly connected through intra-urban freight movement. Finally, spatial interaction characteristics were revealed using a fitting gravity model. Distance lacked substantial influence on the spatial interaction of goods movement. These findings have policy implications to intra-urban logistics and urban transport planning. Numéro de notice : A2020-268 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1520236 Date de publication en ligne : 20/09/2018 En ligne : https://doi.org/10.1080/13658816.2018.1520236 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95039
in International journal of geographical information science IJGIS > vol 34 n° 6 (June 2020) . - pp 1089 - 1116[article]Fine-grained landuse characterization using ground-based pictures: a deep learning solution based on globally available data / Shivangi Srivastava in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
[article]
Titre : Fine-grained landuse characterization using ground-based pictures: a deep learning solution based on globally available data Type de document : Article/Communication Auteurs : Shivangi Srivastava, Auteur ; John E. Vargas-Muñoz, Auteur ; Sylvain Lobry, Auteur ; Devis Tuia, Auteur Année de publication : 2020 Article en page(s) : pp 1117 - 1136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] base de données urbaines
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées des bénévoles
[Termes IGN] données localisées libres
[Termes IGN] Ile-de-France
[Termes IGN] image Streetview
[Termes IGN] image terrestre
[Termes IGN] information géographique
[Termes IGN] méthode heuristique
[Termes IGN] OpenStreetMap
[Termes IGN] réseau socialRésumé : (auteur) We study the problem of landuse characterization at the urban-object level using deep learning algorithms. Traditionally, this task is performed by surveys or manual photo interpretation, which are expensive and difficult to update regularly. We seek to characterize usages at the single object level and to differentiate classes such as educational institutes, hospitals and religious places by visual cues contained in side-view pictures from Google Street View (GSV). These pictures provide geo-referenced information not only about the material composition of the objects but also about their actual usage, which otherwise is difficult to capture using other classical sources of data such as aerial imagery. Since the GSV database is regularly updated, this allows to consequently update the landuse maps, at lower costs than those of authoritative surveys. Because every urban-object is imaged from a number of viewpoints with street-level pictures, we propose a deep-learning based architecture that accepts arbitrary number of GSV pictures to predict the fine-grained landuse classes at the object level. These classes are taken from OpenStreetMap. A quantitative evaluation of the area of Île-de-France, France shows that our model outperforms other deep learning-based methods, making it a suitable alternative to manual landuse characterization. Numéro de notice : A2020-269 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1542698 Date de publication en ligne : 18/11/2018 En ligne : https://doi.org/10.1080/13658816.2018.1542698 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95041
in International journal of geographical information science IJGIS > vol 34 n° 6 (June 2020) . - pp 1117 - 1136[article]Extracting activity patterns from taxi trajectory data: a two-layer framework using spatio-temporal clustering, Bayesian probability and Monte Carlo simulation / Shuhui Gong in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
[article]
Titre : Extracting activity patterns from taxi trajectory data: a two-layer framework using spatio-temporal clustering, Bayesian probability and Monte Carlo simulation Type de document : Article/Communication Auteurs : Shuhui Gong, Auteur ; John Cartlidge, Auteur ; Ruibin Bai, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1210 - 1234 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] comportement
[Termes IGN] données GPS
[Termes IGN] données spatiotemporelles
[Termes IGN] durée de trajet
[Termes IGN] inférence statistique
[Termes IGN] longueur de trajet
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] origine - destination
[Termes IGN] point d'intérêt
[Termes IGN] population urbaine
[Termes IGN] questionnaire
[Termes IGN] taxi
[Termes IGN] voyageRésumé : (auteur) Global positioning system (GPS) data generated from taxi trips is a valuable source of information that offers an insight into travel behaviours of urban populations with high spatio-temporal resolution. However, in its raw form, GPS taxi data does not offer information on the purpose (or intended activity) of travel. In this context, to enhance the utility of taxi GPS data sets, we propose a two-layer framework to identify the related activities of each taxi trip automatically and estimate the return trips and successive activities after the trip, by using geographic point-of-interest (POI) data and a combination of spatio-temporal clustering, Bayesian inference and Monte Carlo simulation. Two million taxi trips in New York, the United States of America, and ten million taxi trips in Shenzhen, China, are used as inputs for the two-layer framework. To validate each layer of the framework, we collect 6,003 trip diaries in New York and 712 questionnaire surveys in Shenzhen. The results show that the first layer of the framework performs better than comparable methods published in the literature, while the second layer has high accuracy when inferring return trips. Numéro de notice : A2020-270 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1641715 Date de publication en ligne : 19/07/2019 En ligne : https://doi.org/10.1080/13658816.2019.1641715 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95042
in International journal of geographical information science IJGIS > vol 34 n° 6 (June 2020) . - pp 1210 - 1234[article]Mining spatiotemporal association patterns from complex geographic phenomena / Zhanjun He in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
[article]
Titre : Mining spatiotemporal association patterns from complex geographic phenomena Type de document : Article/Communication Auteurs : Zhanjun He, Auteur ; Jiannan Cai, Auteur ; Zhong Xie, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1162 -1 187 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] approche hiérarchique
[Termes IGN] Chine
[Termes IGN] diffusion spatiale
[Termes IGN] données localisées dynamiques
[Termes IGN] exploration de données géographiques
[Termes IGN] interaction spatiale
[Termes IGN] modèle entité-association
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] phénomène géographique
[Termes IGN] pollution atmosphérique
[Termes IGN] tempêteRésumé : (auteur) Spatiotemporal association pattern mining can discover interesting interdependent relationships among various types of geospatial data. However, existing mining methods for spatiotemporal association patterns usually model geographic phenomena as simple spatiotemporal point events. Therefore, they cannot be applied to complex geographic phenomena, which continuously change their properties, shapes or locations, such as storms and air pollution. The most salient feature of such complex geographic phenomena is the geographic dynamic. To fully reveal dynamic characteristics of complex geographic phenomena and discover their associated factors, this research proposes a novel complex event-based spatiotemporal association pattern mining framework. First, a complex geographic event was hierarchically modeled and represented by a new data structure named directed spatiotemporal routes. Then, sequence mining technique was applied to discover the spatiotemporal spread pattern of the complex geographic events. An adaptive spatiotemporal episode pattern mining algorithm was proposed to discover the candidate driving factors for the occurrence of complex geographic events. Finally, the proposed approach was evaluated by analyzing the air pollution in the region of Beijing-Tianjin-Hebei. The experimental results showed that the proposed approach can well address the geographic dynamic of complex geographic phenomena, such as the spatial spreading pattern and spatiotemporal interaction with candidate driving factors. Numéro de notice : A2020-340 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1566549 Date de publication en ligne : 01/02/2019 En ligne : https://doi.org/10.1080/13658816.2019.1566549 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95216
in International journal of geographical information science IJGIS > vol 34 n° 6 (June 2020) . - pp 1162 -1 187[article]