Descripteur
Termes IGN > 1-Candidats > modèle numérique de surface de la canopée
modèle numérique de surface de la canopée |
Documents disponibles dans cette catégorie (35)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automated inventory of broadleaf tree plantations with UAS imagery / Aishwarya Chandrasekaran in Remote sensing, vol 14 n° 8 (April-2 2022)
[article]
Titre : Automated inventory of broadleaf tree plantations with UAS imagery Type de document : Article/Communication Auteurs : Aishwarya Chandrasekaran, Auteur ; Guofan Shao, Auteur ; Songlin Fei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1931 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] feuillu
[Termes IGN] hauteur à la base du houppier
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] orthophotoplan numérique
[Termes IGN] plantation forestière
[Termes IGN] R (langage)
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) With the increased availability of unmanned aerial systems (UAS) imagery, digitalized forest inventory has gained prominence in recent years. This paper presents a methodology for automated measurement of tree height and crown area in two broadleaf tree plantations of different species and ages using two different UAS platforms. Using structure from motion (SfM), we generated canopy height models (CHMs) for each broadleaf plantation in Indiana, USA. From the CHMs, we calculated individual tree parameters automatically through an open-source web tool developed using the Shiny R package and assessed the accuracy against field measurements. Our analysis shows higher tree measurement accuracy with the datasets derived from multi-rotor platform (M600) than with the fixed wing platform (Bramor). The results show that our automated method could identify individual trees (F-score > 90%) and tree biometrics (root mean square error Numéro de notice : A2022-351 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14081931 Date de publication en ligne : 16/04/2022 En ligne : https://doi.org/10.3390/rs14081931 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100539
in Remote sensing > vol 14 n° 8 (April-2 2022) . - n° 1931[article]Ultrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach / Linyuan Li in International journal of applied Earth observation and geoinformation, vol 107 (March 2022)
[article]
Titre : Ultrahigh-resolution boreal forest canopy mapping: Combining UAV imagery and photogrammetric point clouds in a deep-learning-based approach Type de document : Article/Communication Auteurs : Linyuan Li, Auteur ; Xihan Mu, Auteur ; Francesco Chianucci, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102686 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme SLIC
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] carte forestière
[Termes IGN] Chine
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couvert forestier
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] faisceau laser
[Termes IGN] forêt boréale
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] modèle numérique de terrain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] sous-étage
[Termes IGN] structure-from-motionRésumé : (auteur) Accurate wall-to-wall estimation of forest crown cover is critical for a wide range of ecological studies. Notwithstanding the increasing use of UAVs in forest canopy mapping, the ultrahigh-resolution UAV imagery requires an appropriate procedure to separate the contribution of understorey from overstorey vegetation, which is complicated by the spectral similarity between the two forest components and the illumination environment. In this study, we investigated the integration of deep learning and the combined data of imagery and photogrammetric point clouds for boreal forest canopy mapping. The procedure enables the automatic creation of training sets of tree crown (overstorey) and background (understorey) data via the combination of UAV images and their associated photogrammetric point clouds and expands the applicability of deep learning models with self-supervision. Based on the UAV images with different overlap levels of 12 conifer forest plots that are categorized into “I”, “II” and “III” complexity levels according to illumination environment, we compared the self-supervised deep learning-predicted canopy maps from original images with manual delineation data and found an average intersection of union (IoU) larger than 0.9 for “complexity I” and “complexity II” plots and larger than 0.75 for “complexity III” plots. The proposed method was then compared with three classical image segmentation methods (i.e., maximum likelihood, Kmeans, and Otsu) in the plot-level crown cover estimation, showing outperformance in overstorey canopy extraction against other methods. The proposed method was also validated against wall-to-wall and pointwise crown cover estimates using UAV LiDAR and in situ digital cover photography (DCP) benchmarking methods. The results showed that the model-predicted crown cover was in line with the UAV LiDAR method (RMSE of 0.06) and deviate from the DCP method (RMSE of 0.18). We subsequently compared the new method and the commonly used UAV structure-from-motion (SfM) method at varying forward and lateral overlaps over all plots and a rugged terrain region, yielding results showing that the method-predicted crown cover was relatively insensitive to varying overlap (largest bias of less than 0.15), whereas the UAV SfM-estimated crown cover was seriously affected by overlap and decreased with decreasing overlap. In addition, canopy mapping over rugged terrain verified the merits of the new method, with no need for a detailed digital terrain model (DTM). The new method is recommended to be used in various image overlaps, illuminations, and terrains due to its robustness and high accuracy. This study offers opportunities to promote forest ecological applications (e.g., leaf area index estimation) and sustainable management (e.g., deforestation). Numéro de notice : A2022-192 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102686 Date de publication en ligne : 05/02/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102686 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99951
in International journal of applied Earth observation and geoinformation > vol 107 (March 2022) . - n° 102686[article]Contributions of multi-temporal airborne LiDAR data to mapping carbon stocks and fluxes in tropical forests / Claudia Milena Huertas Garcia (2022)
Titre : Contributions of multi-temporal airborne LiDAR data to mapping carbon stocks and fluxes in tropical forests Type de document : Thèse/HDR Auteurs : Claudia Milena Huertas Garcia, Auteur ; Grégoire Vincent, Directeur de thèse ; Raphaël Pélissier, Directeur de thèse Editeur : Montpellier : Université de Montpellier Année de publication : 2022 Importance : 155 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse présentée pour l'obtention du Doctorat de l'Université de Montpellier, Spécialité Ecologie et BiodiversitéLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] allométrie
[Termes IGN] biomasse forestière
[Termes IGN] capteur aérien
[Termes IGN] cartographie écologique
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données multitemporelles
[Termes IGN] dynamique de la végétation
[Termes IGN] forêt tropicale
[Termes IGN] Guyane française
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] productivité biologique
[Termes IGN] puits de carboneIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Le changement climatique actuel affecte le fonctionnement des forêts tropicales de nombreuses façons et pourrait mettre en péril leur rôle de puits de carbone mondial. La documentation précise des flux de carbone forestier à une échelle significative est donc un défi urgent. Le LIDAR aéroporté, qui peut fournir une description fine de la structure et de la dynamique de la canopée, a un grand potentiel à cet égard. Cette thèse explore les capacités et les limites du LiDAR multitemporel aéroporté (ALS) pour cartographier les modèles de flux de carbone (mortalité et productivité) dans l'espace et le temps afin de réduire l'incertitude des modèles globaux de stocks et de flux de carbone dans les forêts tropicales. Nous nous sommes appuyés sur la combinaison de survols ALS répétés sur une période de 10 ans d'une part et d'un large réseau de parcelles totalisant plus de 1,2 km2 d'inventaires de terrain réalisés à la Station Permanente de Recherche de Paracou (Guyane française) d'autre part. Trois chapitres principaux sont présentés sous forme d'articles scientifiques. Le premier chapitre (Q1. Modélisation de l'efflux - Mortalité) traite de la possibilité de développer des estimations fiables de la perte de biomasse, de surface terrière et de nombre de tiges (efflux) à partir des changements observés de la hauteur de la canopée lors de survols répétés de la SLA et évalue en outre si ces modèles de perte sont liés à la hauteur de la canopée locale et à la topographie locale. Le deuxième chapitre (Q2. Allométrie et stock de carbone) quantifie la réduction de l'erreur obtenue dans les estimations de l'AGB au niveau de la parcelle en utilisant des allométries Hauteur-Diamètre ajustées localement. Ces allométries sont établies en fusionnant les inventaires de terrain et les modèles de hauteur de canopée dérivés de l'ALS et en incorporant la hauteur de canopée locale et l'identité des espèces comme prédicteurs. Le troisième chapitre (Q3. Modélisation de l'afflux - Productivité) examine si le gain de hauteur de canopée dérivé de l'ALS répété peut être utilisé pour cartographier la productivité primaire nette ligneuse aérienne (AWNPP) sur un site présentant différentes caractéristiques de structure et de dynamique dans des parcelles non perturbées et perturbées comme Paracou. Un dernier chapitre synthétise les principales conclusions des trois premiers articles, et développe une réflexion critique sur les travaux menés pendant ces trois années et demie. Note de contenu : Introduction
- General introduction
- Materials and methods: Site and LiDAR data characteristics
1. Mapping tree mortality rate in a tropical moist forest using multi-temporal LiDAR
1.1 Introduction
1.2 Methodology
1.3 Results
1.4 Discussion
1.5 Conclusions
2. Reducing bias and uncertainty in plot-level AGB by combining ground inventories and ALS
2.1 Introduction
2.2 Methodology & Materials
2.3 Height modeling
2.4 Results
2.5 Discussion
2.6 Conclusions
3. Can multitemporal airborne LiDAR data predict primary productivity in dense tropical forests?
3.1 Introduction
3.2 Materials and Methods
3.3 Results
3.4 Discussion
3.5. Conclusions
- Synthesis and perspectivesNuméro de notice : 26939 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Ecologie et Biodiversité : Montpellier : 2022 Organisme de stage : Institut de Recherche pour le Développement nature-HAL : Thèse DOI : sans Date de publication en ligne : 17/11/2022 En ligne : https://hal.inrae.fr/tel-03850769/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102079 Developing the potential of airborne lidar systems for the sustainable management of forests / Karun Dayal (2022)
Titre : Developing the potential of airborne lidar systems for the sustainable management of forests : accounting for and managing the impacts of lidar scan angle on ABA model predictions of forest attributes Type de document : Thèse/HDR Auteurs : Karun Dayal, Auteur ; Sylvie Durrieu, Directeur de thèse ; Marc Bouvier, Directeur de thèse Editeur : Paris, Nancy, ... : AgroParisTech (2007 -) Année de publication : 2022 Note générale : Bibliographie
Thèse pour obtenir le grade de Docteur de l’Institut national des sciences et industries du vivant et de l'environnement - AgroParisTech, Spécialité GéomatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] analyse comparative
[Termes IGN] angle de visée
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt alpestre
[Termes IGN] forêt ripicole
[Termes IGN] gestion durable
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] jeu de données localisées
[Termes IGN] ligne de visée
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] peuplement forestier
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] prédiction
[Termes IGN] réseau neuronal artificiel
[Termes IGN] télémètre laser à balayage
[Termes IGN] télémètre laser aéroportéIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) L’information mesurée par Lidar aéroporté dépend de la végétation observée et de la géométrie de l'acquisition lidar, elle-même fonction des paramètres d'acquisition et des propriétés du terrain. Cette thèse vise à comprendre la relation entre la géométrie d'acquisition du lidar et les prédictions d'attributs forestiers en se focalisant sur l'évaluation et la gestion des impacts de l'angle de balayage du lidar sur les métriques lidar et les modèles construits à l’échelle du peuplement (i.e. approches surfaciques ou ABA). Quatre types de forêts différents ont été étudiés, dont trois types de forêts (feuillus, conifères et mixtes) en terrain montagneux et un type de forêt (ripisylve) en terrain relativement plat . La thèse est divisée en trois parties. La première partie évalue l'effet de l'angle de balayage du lidar sur les mesures lidar couramment utilisées dans les prédictions de type ABA. On a ainsi montré que les différentes métriques lidar ne sont pas impactées de la même façon par des changements d'angle de balayage. La deuxième partie de l'étude s’intéresse aux conséquences sur la qualité des modèles de l’introduction dans ces modèles de métriques lidar présentant des sensibilités différentes à l'angle de balayage. Un modèle basé sur un jeu de métriques Lidar prédéfinies, plus ou moins sensibles aux angles de balayage, est utilisé.Les jeux de données lidar existants sont ré-échantillonnés selon les lignes de vol pour 1) simuler des acquisitions lidar avec différentes configurations de balayage, 2) construire des modèles pour une série de configurations de balayage différentes, et 3) comparer la qualité des estimations qui résultent de chaque configuration d’acquisition. Ces comparaisons montrent que l’introduction de métriques sensibles à l’angle de balayage diminue la robustesse des modèles. De plus, la variation de la précision des modèles ABA s’est révélée être plus élevée pour les jeux de données composés de nuages de points acquis depuis une seule ligne de vol que pour ceux composés de nuages de points obtenus en combinant les mesures de plusieurs lignes de vol.Nous avons aussi tenté de normaliser les métriques lidar en utilisant des méthodes de voxellisation pour limiter les impacts des changements d’angles de balayage. Les métriques issues des données voxellisées contribuent à augmenter la précision des prédictions ou à augmenter leur justesse, ou, dans certains cas, les deux en même temps. Dans la dernière partie de l'étude, les propriétés du terrain (topographie) et les paramètres d'acquisition sont explicitement pris en compte dans les modèles. Comme les interactions entre les paramètres d'acquisition lidar, le terrain et les propriétés de la végétation peuvent être complexes, un réseau de neurone (perceptron multicouche) est utilisé pour modéliser les relations entre les attributs forestiers et les métriques lidar en tenant compte de ces interactions entre métriques lidar et géométrie d'acquisition. Cela a permis d'améliorer significativement les prédictions ABA. Note de contenu : Chapter 1: Introduction
1.1 Sustainable Forest Management
1.2 The role of remote sensing in enhancing forest inventory
1.3 Enhanced forest inventory with lidar
1.4 Understanding the role of lidar scan angle in forestry applications
1.5 Research questions and objectives
1.6 Overview of the thesis
Chapter 2: Scan angle impact on lidar-derived metrics used in ABA models for prediction of forest
stand characteristics: a grid based analysis
2.1 Introduction
2.2 Materials
2.3 Methods
2.4 Results
2.5 Discussion
2.6 Conclusions
2.7 Acknowledgement
Chapter 3: An investigation into lidar scan angle impacts on stand attribute predictions in different
forest environments
3.1 Introduction
3.2 Materials and methods
3.3 Results
3.5 Conclusion
3.6 Acknowledgements
Chapter 4: Improving ABA models for forest attribute prediction using neural networks by considering effects of terrain and scan angles on 3D lidar point clouds
4.1 Introduction
4.2 Materials and methods
4.3 Results
4.4 Discussion
4.5 Conclusion
Chapter 5: Conclusion
5.1 Synthesis of the thesis
5.2 Limitations and PerspectivesNuméro de notice : 26957 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Géomatique : Université Paris-Saclay : 2022 Organisme de stage : UMR TETIS - Territoires, Environnement, Télédétection et Information Spatiale nature-HAL : Thèse DOI : sans Date de publication en ligne : 24/01/2023 En ligne : https://hal.science/tel-03954492 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102527 Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles / Nico Lang in Remote sensing of environment, vol 268 (January 2022)
[article]
Titre : Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles Type de document : Article/Communication Auteurs : Nico Lang, Auteur ; Nicolai Kalischek, Auteur ; John Armston, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n* 112760 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] biomasse aérienne
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] estimation bayesienne
[Termes IGN] forme d'onde
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] semis de pointsRésumé : (auteur) NASA's Global Ecosystem Dynamics Investigation (GEDI) is a key climate mission whose goal is to advance our understanding of the role of forests in the global carbon cycle. While GEDI is the first space-based LIDAR explicitly optimized to measure vertical forest structure predictive of aboveground biomass, the accurate interpretation of this vast amount of waveform data across the broad range of observational and environmental conditions is challenging. Here, we present a novel supervised machine learning approach to interpret GEDI waveforms and regress canopy top height globally. We propose a probabilistic deep learning approach based on an ensemble of deep convolutional neural networks (CNN) to avoid the explicit modelling of unknown effects, such as atmospheric noise. The model learns to extract robust features that generalize to unseen geographical regions and, in addition, yields reliable estimates of predictive uncertainty. Ultimately, the global canopy top height estimates produced by our model have an expected RMSE of 2.7 m with low bias. Numéro de notice : A2022-086 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112760 Date de publication en ligne : 03/11/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112760 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99495
in Remote sensing of environment > vol 268 (January 2022) . - n* 112760[article]Multi-model estimation of forest canopy closure by using red edge bands based on Sentinel-2 images / Yiying Hua in Forests, vol 12 n° 12 (December 2021)PermalinkMapping canopy heights in dense tropical forests using low-cost UAV-derived photogrammetric point clouds and machine learning approaches / He Zhang in Remote sensing, vol 13 n° 18 (September-2 2021)PermalinkA comparison of ALS and dense photogrammetric point clouds for individual tree detection in radiata pine plantations / Irfan A. Iqbal in Remote sensing, vol 13 n° 17 (September-1 2021)PermalinkAutomated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN) / Zhenbang Hao in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)PermalinkUnmanned aerial vehicles (UAV)-based canopy height modeling under leaf-on and leaf-off conditions for determining tree height and crown diameter (Case study: Hyrcanian mixed forest) / Vahid Nasiri in Canadian Journal of Forest Research, Vol 51 n° 7 (July 2021)PermalinkForest height estimation from a robust TomoSAR method in the case of small tomographic aperture with airborne dataset at L-band / Xing Peng in Remote sensing, vol 13 n° 11 (June-1 2021)PermalinkIndividual tree identification using a new cluster-based approach with discrete-return airborne LiDAR data / Haijian Liu in Remote sensing of environment, vol 258 (June 2021)PermalinkPredicting tree species based on the geometry and density of aerial laser scanning point cloud of treetops / Nina Kranjec in Geodetski vestnik, vol 65 n° 2 (June - August 2021)PermalinkWhat factors shape spatial distribution of biomass in riparian forests? Insights from a LiDAR survey over a large area / Leo Huylenbroeck in Forests, vol 12 n° 3 (March 2021)PermalinkThe effect of leaf-on and leaf-off forest canopy conditions on LiDAR derived estimations of forest structural diversity / Sophie Davison in International journal of applied Earth observation and geoinformation, vol 92 (October 2020)Permalink