Silva fennica / Finnish society of forest science (Finlande) . vol 54 n° 2Paru le : 01/03/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierLarge-scale two-phase estimation of wood production by poplar plantations exploiting Sentinel-2 data as auxiliary information / Agnese Marcelli in Silva fennica, vol 54 n° 2 (March 2020)
[article]
Titre : Large-scale two-phase estimation of wood production by poplar plantations exploiting Sentinel-2 data as auxiliary information Type de document : Article/Communication Auteurs : Agnese Marcelli, Auteur ; Walter Mattioli, Auteur ; Nicola Puletti, Auteur ; et al., Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] acteurs de la filière bois-forêt
[Termes IGN] bois sur pied
[Termes IGN] échantillonnage
[Termes IGN] image à haute résolution
[Termes IGN] image Sentinel-MSI
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Italie
[Termes IGN] Populus (genre)
[Termes IGN] récolte de bois
[Termes IGN] régression linéaire
[Termes IGN] tessellation
[Termes IGN] volume en boisRésumé : (auteur) Growing demand for wood products, combined with efforts to conserve natural forests, have supported a steady increase in the global extent of planted forests. Here, a two-phase sampling strategy for large-scale assessment of the total area and the total wood volume of fast-growing forest tree crops within agricultural land is presented. The first phase is performed using tessellation stratified sampling on high-resolution remotely sensed imagery and is sufficient for estimating the total area of plantations by means of a Monte Carlo integration estimator. The second phase is performed using stratified sampling of the plantations selected in the first phase and is aimed at estimating total wood volume by means of an approximation of the first-phase Horvitz-Thompson estimator. Vegetation indices from Sentinel-2 are exploited as freely available auxiliary information in a linear regression estimator to improve the design-based precision of the estimator based on the sole sample data. Estimators of the totals and of the design-based variances of total estimators are presented. A simulation study is developed in order to check the design-based performance of the two alternative estimators under several artificial distributions supposed for poplar plantations (random, clustered, spatially trended). An application in Northern Italy is also reported. The regression estimator turns out to be invariably better than that based on the sole sample information. Possible integrations of the proposed sampling scheme with conventional national forest inventories adopting tessellation stratified sampling in the first phase are discussed. Numéro de notice : A2020-323 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10247 Date de publication en ligne : 20/03/2020 En ligne : https://doi.org/10.14214/sf.10247 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95197
in Silva fennica > vol 54 n° 2 (March 2020)[article]An original method for tree species classification using multitemporal multispectral and hyperspectral satellite data / Olga Grigorieva in Silva fennica, vol 54 n° 2 (March 2020)
[article]
Titre : An original method for tree species classification using multitemporal multispectral and hyperspectral satellite data Type de document : Article/Communication Auteurs : Olga Grigorieva, Auteur ; Olga Brovkina, Auteur ; Alisher Saidov, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Betula (genre)
[Termes IGN] carte forestière
[Termes IGN] classification
[Termes IGN] erreur de classification
[Termes IGN] image hyperspectrale
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] phénologie
[Termes IGN] Pinus (genre)
[Termes IGN] réflectance spectrale
[Termes IGN] République Tchèque
[Termes IGN] Russie
[Termes IGN] signature spectrale
[Termes IGN] variation saisonnièreRésumé : (auteur) his study proposes an original method for tree species classification by satellite remote sensing. The method uses multitemporal multispectral (Landsat OLI) and hyperspectral (Resurs-P) data acquired from determined vegetation periods. The method is based on an original database of spectral features taking into account seasonal variations of tree species spectra. Changes in the spectral signatures of forest classes are analyzed and new spectral–temporal features are created for the classification. Study sites are located in the Czech Republic and northwest (NW) Russia. The differences in spectral reflectance between tree species are shown as statistically significant in the sub-seasons of spring, first half of summer, and main autumn for both study sites. Most of the errors are related to the classification of deciduous species and misclassification of birch as pine (NW Russia site), pine as mixture of pine and spruce, and pine as mixture of spruce and beech (Czech site). Forest species are mapped with accuracy as high as 80% (NW Russia site) and 81% (Czech site). The classification using multitemporal multispectral data has a kappa coefficient 1.7 times higher than does that of classification using a single multispectral image and 1.3 times greater than that of the classification using single hyperspectral images. Potentially, classification accuracy can be improved by the method when applying multitemporal satellite hyperspectral data, such as in using new, near-future products EnMap and/or HyspIRI with high revisit time. Numéro de notice : A2020-324 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10143 Date de publication en ligne : 02/03/2020 En ligne : https://doi.org/10.14214/sf.10143 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95198
in Silva fennica > vol 54 n° 2 (March 2020)[article]