Descripteur
Documents disponibles dans cette catégorie (392)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Improved parametrisation of a physically-based forest reflectance model for retrieval of boreal forest structural properties / Eelis Halme in Silva fennica, vol 57 n° 2 (April 2023)
[article]
Titre : Improved parametrisation of a physically-based forest reflectance model for retrieval of boreal forest structural properties Type de document : Article/Communication Auteurs : Eelis Halme, Auteur ; Matti Mõttus, Auteur Année de publication : 2023 Article en page(s) : n° 22028 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Betula pendula
[Termes IGN] betula pubescens
[Termes IGN] densité du peuplement
[Termes IGN] diagnostic foliaire
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] image Sentinel-MSI
[Termes IGN] modèle de croissance végétale
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] réflectance végétale
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) Physically-based reflectance models offer a robust and transferable method to assess biophysical characteristics of vegetation in remote sensing. Forests exhibit explicit structure at many scales, from shoots and branches to landscape patches, and hence present a specific challenge to vegetation reflectance modellers. To relate forest reflectance with its structure, the complexity must be parametrised leading to an increase in the number of reflectance model inputs. The parametrisations link reflectance simulations to measurable forest variables, but at the same time rely on abstractions (e.g. a geometric surface forming a tree crown) and physically-based simplifications that are difficult to quantify robustly. As high-quality data on basic forest structure (e.g. tree height and stand density) and optical properties (e.g. leaf and forest floor reflectance) are becoming increasingly available, we used the well-validated forest reflectance and transmittance model FRT to investigate the effect of the values of the “uncertain” input parameters on the accuracy of modelled forest reflectance. With the state-of-the-art structural and spectral forest information, and Sentinel-2 Multispectral Instrument imagery, we identified that the input parameters influencing the most the modelled reflectance, given that the basic forestry variables are set to their true values and leaf mass is determined from reliable allometric models, are the regularity of the tree distribution and the amount of woody elements. When these parameters were set to their new adjusted values, the model performance improved considerably, reaching in the near infrared spectral region (740–950 nm) nearly zero bias, a relative RMSE of 13% and a correlation coefficient of 0.81. In the visible part of the spectrum, the model performance was not as consistent indicating room for improvement. Numéro de notice : A2023-228 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.22028 Date de publication en ligne : 30/05/2023 En ligne : https://doi.org/10.14214/sf.22028 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103260
in Silva fennica > vol 57 n° 2 (April 2023) . - n° 22028[article]Forests attenuate temperature and air pollution discomfort in montane tourist areas / Elena Gottardini in Forests, vol 14 n° 3 (March 2023)
[article]
Titre : Forests attenuate temperature and air pollution discomfort in montane tourist areas Type de document : Article/Communication Auteurs : Elena Gottardini, Auteur ; Fabiana Cristofolini, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 545 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] bien-être collectif
[Termes IGN] forêt alpestre
[Termes IGN] Italie
[Termes IGN] pollution atmosphérique
[Termes IGN] qualité de l'air
[Termes IGN] service écosystémique
[Termes IGN] température de l'air
[Termes IGN] tourisme
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Forests deliver many ecosystem services, from provisioning to regulating and cultural services. We aimed at demonstrating microclimatic regulation and pollutant removal as especially relevant ecosystem services when considering the tourism vocation of the Alpine regions. A study was realized along an altitudinal gradient (900–1600 m a.s.l.) in Trentino, northern Italy, an area with high touristic presence (ca. 9.3 million overnight stays in summer 2021). Nitrogen dioxide (NO2, µg m−3), ozone (O3, µg m−3) concentrations, air temperature (T, °C), and relative humidity (RH, %) were simultaneously measured in three open-field sites (OF) and below-canopy Norway spruce forest stands (FO) during the period 23 May–7 August 2013. The temperature–humidity index (THI) was calculated. We found a distinct mitigating effect of forest on T, with lower maximum (−30.6%) and higher minimum values (+6.3%) in FO than in OF. THI supported a higher comfort sensation in FO than in OF, especially in the central part of the day. NO2 concentrations did not differ between OF and FO; ozone concentrations were lower in FO than OF. This study confirms the role of forests in providing several ecosystem services beneficial for forest users, especially relevant for promoting nature-based tourism in the Alpine region. Numéro de notice : A2023-168 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f14030545 Date de publication en ligne : 10/03/2023 En ligne : https://doi.org/10.3390/f14030545 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102905
in Forests > vol 14 n° 3 (March 2023) . - n° 545[article]Multi-sensor airborne lidar requires intercalibration for consistent estimation of light attenuation and plant area density / Grégoire Vincent in Remote sensing of environment, vol 286 (March 2023)
[article]
Titre : Multi-sensor airborne lidar requires intercalibration for consistent estimation of light attenuation and plant area density Type de document : Article/Communication Auteurs : Grégoire Vincent, Auteur ; Philippe Verley, Auteur ; Benjamin Brede, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 113442 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] canopée
[Termes IGN] densité de la végétation
[Termes IGN] données lidar
[Termes IGN] forêt tropicale
[Termes IGN] Guyane (département français)
[Termes IGN] image captée par drone
[Termes IGN] plan de vol
[Termes IGN] rayonnement lumineux
[Termes IGN] réflectance végétale
[Termes IGN] semis de points
[Termes IGN] zone d'intérêtRésumé : (auteur) Leaf area is a key structural characteristic of forest canopies because of the role of leaves in controlling many biological and physical processes occurring at the biosphere-atmosphere transition. High pulse density Airborne Laser Scanning (ALS) holds promise to provide spatially resolved and accurate estimates of plant area density (PAD) in forested landscapes, a key step in understanding forest functioning: phenology, carbon uptake, transpiration, radiative balance etc. Inconsistencies between different ALS sensors is a barrier to generating globally harmonised PAD estimates. The basic assumption on which PAD estimation is based is that light attenuation is proportional to vegetation area density. This study shows that the recorded extinction strongly depends on target detectability which is influenced by laser characteristics (power, sensitivity, wavelength). Three different airborne laser scanners were flown over a wet tropical forest at the Paracou research station in French Guiana. Different sensors, flight heights and transmitted power levels were compared. Light attenuation was retrieved with an open source ray-tracing code (http://amapvox.org). Direct comparison revealed marked differences (up-to 25% difference in profile-averaged light attenuation rate and 50% difference at particular heights) that could only be explained by differences in scanner characteristics. We show how bias which may occur under various acquisition conditions can generally be mitigated by a sensor intercalibration. Alignment of light weight lidar attenuation profiles to ALS reference attenuation profiles is not always satisfactory and we discuss what are the likely sources of discrepancies. Neglecting the dependency of apparent light attenuation on scanner properties may lead to biases in estimated vegetation density commensurate to those affecting light attenuation estimates. Applying intercalibration procedures supports estimation of plant area density independent of acquisition characteristics. Numéro de notice : A2023-169 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113442 Date de publication en ligne : 06/01/2023 En ligne : https://doi.org/10.1016/j.rse.2022.113442 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102928
in Remote sensing of environment > vol 286 (March 2023) . - n° 113442[article]Amazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography / Nathan B. Gonçalves in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : Amazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography Type de document : Article/Communication Auteurs : Nathan B. Gonçalves, Auteur ; Ricardo Dalagnol, Auteur ; Jin Wu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 93 - 104 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Amazonie
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] image proche infrarouge
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] Leaf Area Index
[Termes IGN] réflectance spectrale
[Termes IGN] sécheresse
[Termes IGN] variation saisonnièreRésumé : (Auteur) Controversy surrounds the reported dry season greening of the Central Amazon forests based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS). As the solar zenith angle decreases during the dry season, it affects the sub-pixel shade content and artificially increases Near-infrared (NIR) reflectance and EVI. MODIS' coarse resolution also creates a challenge for cloud and terrain filtering. To reduce these artifacts and then validate MODIS seasonal spectral patterns we use 16 years of 1 km resolution MODIS-MAIAC (Multi-Angle Implementation of Atmospheric Correction) images, corrected to a nadir view and 45° solar zenith angle, together with an improved cloud filter. Then we show that the 30 m Landsat-8 Operational Land Imager (OLI) surface reflectance over two Landsat scenes provides independent evidence supporting the MODIS-MAIAC seasonality for EVI, NIR, and GCC (an additional important vegetation index, green chromatic coordinate). Our empirical method for controlling for sun-sensor geometry effects in Landsat scenes encompasses the use of seasonally distinct images that have similar solar zenith angles and cloud-free pixels on flat uplands having the same phase angle. We extended this validation to nine Amazon sub-basins comprising ∼546 Landsat-8 images. Our study shows that the dry-season green-up pattern observed by MODIS is corroborated by Landsat-8, and is independent of satellite data artifacts. To investigate the mechanisms driving these seasonal changes we further used Central Amazon tower-mounted RGB cameras providing a 4-year record at the Amazon Tall Tower (ATTO, 2°8′36″S, 59°0′2″W) and a 7-year record at the Manaus k34 tower (2°36′33″ S, 60°12′33″W) to obtain monthly upper canopy green leaf cover (a proxy for Leaf Area Index - LAI) and monthly leaf age class abundances (based on the age since leaf flushing, by crown). These were compared to seasonal patterns of GCC and EVI in small MODIS-MAIAC windows centered on each tower. MODIS-MAIAC GCC was positively correlated with newly flushed leaves (R2 = 0.76 and 0.44 at ATTO and k34, respectively). EVI correlated strongly with the abundance of mature leaves (R2 = 0.82 and 0.80) but was poorly correlated with LAI (R2 = 0.20 and 0.41, respectively). Therefore, seasonal spectral patterns in the Central Amazon are likely controlled by leaf age variation, not quantity of leaf area. Numéro de notice : A2023-065 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.001 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102423
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 93 - 104[article]Evaluation of growth models for mixed forests used in Swedish and Finnish decision support systems / Jorge Aldea in Forest ecology and management, vol 529 (February-1 2023)
[article]
Titre : Evaluation of growth models for mixed forests used in Swedish and Finnish decision support systems Type de document : Article/Communication Auteurs : Jorge Aldea, Auteur ; Simone Bianchi, Auteur ; Urban Nilsson, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 120721 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Betula (genre)
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] peuplement mélangé
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Suède
[Termes IGN] système d'aide à la décision
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Interest in mixed forests is increasing since they could provide higher benefits and positive externalities compared to monocultures, although their management is more complex and silvicultural prescriptions for them are still scarce. Growth simulations are a powerful tool for developing useful guidelines for mixed stands. Heureka and Motti are two decision support systems commonly used for forest management in Sweden and Finland respectively. They were developed mostly with data from pure stands, so how they would perform in mixed stands is currently uncertain. We compiled a large and updated common database of well-replicated experimental research sites and monitoring networks composed by 218 and 1,160 plot-level observations of mixed stands from Sweden and Finland, respectively. We aimed to evaluated the accuracy of Heureka and Motti basal area growth models in those mixed-species stands and to detect any bias in their short-term predictions. Basal area growth simulations (excluding mortality models) were compared to observed stand-level values in a period-wise process with update of the start values in each period. The residual plots were visually examined for different stand mixtures: Norway spruce (Picea abies Karst.)-birch (Betula spp), Scots pine (Pinus sylvestris L.)-birch and Scots pine-Norway spruce. We observed that the basal area growth models in both decision support systems performed quite well for all mixtures regardless of the proportion of species. Motti simulations overestimated growth in Scots pine-Norway spruce mixtures by 0.063 m2·ha−1·year−1 which may be acceptable for practical use. Therefore, we corroborated that both decision support systems can be currently utilized for short-term forest growth simulation of mixed boreal forests. Numéro de notice : A2023-107 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120721 Date de publication en ligne : 28/12/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120721 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102441
in Forest ecology and management > vol 529 (February-1 2023) . - n° 120721[article]Stochastic multicriteria acceptability analysis as a forest management priority mapping approach based on airborne laser scanning and field inventory data / Parvez Rana in Landscape and Urban Planning, vol 230 (February 2023)PermalinkTesting the application of process-based forest growth model PREBAS to uneven-aged forests in Finland / Man Hu in Forest ecology and management, vol 529 (February-1 2023)PermalinkMitigating the risk of wind damage at the forest landscape level by using stand neighbourhood and terrain elevation information in forest planning / Roope Ruotsalainen in Forestry, an international journal of forest research, vol 96 n° 1 (January 2023)PermalinkTaller and slenderer trees in Swedish forests according to data from the National Forest Inventory / Alex Appiah Mensah in Forest ecology and management, vol 527 (January-1 2023)PermalinkThe contribution of understorey vegetation to ecosystem evapotranspiration in boreal and temperate forests: a literature review and analysis / Philippe Balandier in European Journal of Forest Research, vol 141 n° 6 (December 2022)PermalinkAge-independent diameter increment models for mixed mountain forests / Albert Ciceu in European Journal of Forest Research, vol 141 n° 5 (October 2022)PermalinkDeep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope / V.S. Martins in Remote sensing of environment, vol 280 (October 2022)PermalinkIncreasing and widespread vulnerability of intact tropical rainforests to repeated droughts / Shengli Tao in Proceedings of the National Academy of Sciences of the United States of America PNAS, vol 119 n° 37 (2022)PermalinkAssessing the impact of forest structure disturbances on the arboreal movement and energetics of orangutans : An agent-based modeling approach / Kirana Widyastuti in Frontiers in Ecology and Evolution, vol 2022 ([01/09/2022])PermalinkEffect of riparian soil moisture on bacterial, fungal and plant communities and microbial decomposition rates in boreal stream-side forests / M.J. Annala in Forest ecology and management, vol 519 (September-1 2022)Permalink