Descripteur
Termes IGN > informatique > langage naturel (informatique)
langage naturel (informatique)Voir aussi |
Documents disponibles dans cette catégorie (73)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
ChatGPT pour la géomatique, potentiel d’utilisation et limites / Emmanuel Clédat in XYZ, n° 174 (mars 2023)
[article]
Titre : ChatGPT pour la géomatique, potentiel d’utilisation et limites Type de document : Article/Communication Auteurs : Emmanuel Clédat , Auteur ; Philippe Sablayrolles, Auteur Année de publication : 2023 Article en page(s) : pp 19 - 23 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] intelligence artificielle
[Termes IGN] langage naturel (informatique)
[Termes IGN] multilatération
[Termes IGN] parangonnageRésumé : (Auteur) ChatGPT a été le sujet de discussion récurent durant les fêtes de fin d’année 2022 (ou en tout cas le sujet de discussion récurrent chez les geeks !). Certains trouvent cet outil formidable, d’autres dystopique, mais de quoi s’agit-il exactement? C’est ce que l’on appelle un outil conversationnel en langage naturel, c’est-à-dire une intelligence artificielle capable de générer du texte suite à une requête exprimée sous forme d’une ou plusieurs phrases. Numéro de notice : A2023-068 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtSansCL DOI : sans Date de publication en ligne : 01/03/2023 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102845
in XYZ > n° 174 (mars 2023) . - pp 19 - 23[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 112-2023011 RAB Revue Centre de documentation En réserve L003 Disponible A benchmark of nested named entity recognition approaches in historical structured documents / Solenn Tual (2023)
Titre : A benchmark of nested named entity recognition approaches in historical structured documents Type de document : Article/Communication Auteurs : Solenn Tual , Auteur ; Nathalie Abadie , Auteur ; Joseph Chazalon, Auteur ; Bertrand Duménieu , Auteur ; Edwin Carlinet, Auteur Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2023 Projets : SODUCO / Perret, Julien Importance : 18 p. Format : 21 x 30 cm Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] langage naturel (informatique)
[Termes IGN] reconnaissance de noms
[Termes IGN] traitement du langage naturelRésumé : (Auteur) Named Entity Recognition (NER) is a key step in the creation of structured data from digitised historical documents. Traditional NER approaches deal with flat named entities, whereas entities often are nested. For example, a postal address might contain a street name and a number. This work compares three nested NER approaches, including two state-of-the-art approaches using Transformer-based architectures. We introduce a new Transformer-based approach based on joint labelling and semantic weighting of errors, evaluated on a collection of 19 th-century Paris trade directories. We evaluate approaches regarding the impact of supervised fine-tuning, unsupervised pre-training with noisy texts, and variation of IOB tagging formats. Our results show that while nested NER approaches enable extracting structured data directly, they do not benefit from the extra knowledge provided during training and reach a performance similar to the base approach on flat entities. Even though all 3 approaches perform well in terms of F1 scores, joint labelling is most suitable for hierarchically structured data. Finally, our experiments reveal the superiority of the IO tagging format on such data. Numéro de notice : P2023-001 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE/TOPONYMIE Nature : Preprint nature-HAL : Préprint DOI : sans Date de publication en ligne : 20/02/2023 En ligne : https://hal.science/hal-03994759v1/document Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102602 Spatially oriented convolutional neural network for spatial relation extraction from natural language texts / Qinjun Qiu in Transactions in GIS, vol 26 n° 2 (April 2022)
[article]
Titre : Spatially oriented convolutional neural network for spatial relation extraction from natural language texts Type de document : Article/Communication Auteurs : Qinjun Qiu, Auteur ; Zhong Xie, Auteur ; Kai Ma, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 839 - 866 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] exploration de données
[Termes IGN] langage naturel (informatique)
[Termes IGN] proximité sémantique
[Termes IGN] relation spatiale
[Termes IGN] relation topologique
[Termes IGN] site wiki
[Termes IGN] spatial metrics
[Termes IGN] système à base de connaissancesRésumé : (auteur) Spatial relation extraction (e.g., topological relations, directional relations, and distance relations) from natural language descriptions is a fundamental but challenging task in several practical applications. Current state-of-the-art methods rely on rule-based metrics, either those specifically developed for extracting spatial relations or those integrated in methods that combine multiple metrics. However, these methods all rely on developed rules and do not effectively capture the characteristics of natural language spatial relations because the descriptions may be heterogeneous and vague and may be context sparse. In this article, we present a spatially oriented piecewise convolutional neural network (SP-CNN) that is specifically designed with these linguistic issues in mind. Our method extends a general piecewise convolutional neural network with a set of improvements designed to tackle the task of spatial relation extraction. We also propose an automated workflow for generating training datasets by integrating new sentences with those in a knowledge base, based on string similarity and semantic similarity, and then transforming the sentences into training data. We exploit a spatially oriented channel that uses prior human knowledge to automatically match words and understand the linguistic clues to spatial relations, finally leading to an extraction decision. We present both the qualitative and quantitative performance of the proposed methodology using a large dataset collected from Wikipedia. The experimental results demonstrate that the SP-CNN, with its supervised machine learning, can significantly outperform current state-of-the-art methods on constructed datasets. Numéro de notice : A2022-365 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12887 Date de publication en ligne : 27/12/2021 En ligne : https://doi.org/10.1111/tgis.12887 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100584
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 839 - 866[article]Architecture for semantic web service composition in spatial data infrastructures / Deniztan Ulutaş Karakol in Survey review, vol 54 n° 382 (January 2022)
[article]
Titre : Architecture for semantic web service composition in spatial data infrastructures Type de document : Article/Communication Auteurs : Deniztan Ulutaş Karakol, Auteur ; Cetin Cömert, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] accès aux données localisées
[Termes IGN] conception orientée utilisateur
[Termes IGN] langage naturel (informatique)
[Termes IGN] ontologie
[Termes IGN] OWL
[Termes IGN] web sémantiqueRésumé : (auteur) The importance of geospatial data has rendered it to be used in decision-making in both public and private sectors. The purpose of this study was to employ Semantic Web Technology (SWT) for the problems of Web Service Composition (WSC) in the context of Spatial Data Infrastructures (SDI). Some of these problems are identifying the workflow sequence and the user goal, discovering services according to service parameters, and matching these parameters. As a suggestion for the solution of all these problems a semi-automated WSC architecture was proposed in this study. In terms of architecture, users state their ‘goal’ with a natural language sentence. By semantically matching this sentence with a Spatial Services Ontology (SSO), the corresponding ‘abstract’ WSC was ‘located’ and the ‘concrete’ WSC was formed. Although there are still problems waiting to be solved due to the scope of the work, this study makes a valuable contribution to the area. Numéro de notice : A2022-110 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2020.1858255 Date de publication en ligne : 25/12/2020 En ligne : https://doi.org/10.1080/00396265.2020.1858255 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99627
in Survey review > vol 54 n° 382 (January 2022) . - pp 1 - 16[article]
Titre : Social Media and Machine Learning Type de document : Monographie Auteurs : Alberto Cano, Éditeur scientifique Editeur : London [UK] : IntechOpen Année de publication : 2020 Importance : 96 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-1-83880-616-3 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage automatique
[Termes IGN] données massives
[Termes IGN] exploration de texte
[Termes IGN] langage naturel (informatique)
[Termes IGN] réseau social
[Termes IGN] sentimentRésumé : (éditeur) Social media has transformed society and the way people interact with each other. The volume and speed in which new content is being generated surpasses the processing capacity of machine learning systems. Analyzing such data demands new approaches coming from natural language processing, text mining, sentiment analysis, etc to understand and resolve the arising challenges. There is a need to develop robust and adaptable systems to tackle these open issues in real time, as well as to provide a meaningful summarization and visualization to the end users. This book provides the reader with a comprehensive overview of the latest developments in social media and machine learning, addressing research innovations, applications, trends, and open challenges in this crucial area. Note de contenu : 1- Introductory chapter: Data streams and online learning in social media
2- Automatic speech emotion recognition using machine learning
3- A case study of using big data processing in education: Method of matching members by optimizing collaborative
learning environment
4- Literature review on big data analytics methods
5- Information and communication based collaborative learning and behavior modeling using machine learning algorithmNuméro de notice : 28481 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/SOCIETE NUMERIQUE Nature : Recueil / ouvrage collectif DOI : 10.5772/intechopen.78089 En ligne : https://doi.org/10.5772/intechopen.78089 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99165 Designing geovisual analytics environments and displays with humans in mind / Arzu Çöltekin in ISPRS International journal of geo-information, vol 8 n° 12 (December 2019)PermalinkMapping urban fingerprints of odonyms automatically extracted from French novels / Ludovic Moncla in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)PermalinkDataPink, l'IA au service de l'information géographique / Anonyme in Géomatique expert, n° 126 (janvier - février 2019)PermalinkA spatial analysis of non‐English Twitter activity in Houston, TX / Matthew Haffner in Transactions in GIS, vol 22 n° 4 (August 2018)PermalinkAggregate keyword nearest neighbor queries on road networks / Pengfei Zhang in Geoinformatica, vol 22 n° 2 (April 2018)PermalinkInterpreting the fuzzy semantics of natural-language spatial relation terms with the fuzzy random forest algorithm / Xiaonan Wang in ISPRS International journal of geo-information, vol 7 n° 2 (February 2018)PermalinkPopularity-aware collective keyword queries in road networks / Sen Zhao in Geoinformatica, vol 21 n° 3 (July - September 2017)PermalinkClassifying natural-language spatial relation terms with random forest algorithm / Shihong Du in International journal of geographical information science IJGIS, vol 31 n° 3-4 (March-April 2017)PermalinkReconstruction of itineraries from annotated text with an informed spanning tree algorithm / Ludovic Moncla in International journal of geographical information science IJGIS, vol 30 n° 5-6 (May - June 2016)PermalinkReconstruction automatique d'itinéraires à partir de textes descriptifs / Ludovic Moncla in Cartes & Géomatique, n° 227 (mars - mai 2016)Permalink