Descripteur
Documents disponibles dans cette catégorie (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands / Emmanuelle Vaudour in International journal of applied Earth observation and geoinformation, vol 96 (April 2021)
[article]
Titre : Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands Type de document : Article/Communication Auteurs : Emmanuelle Vaudour, Auteur ; Cécile Gomez, Auteur ; Philippe Lagacherie, Auteur Année de publication : 2021 Article en page(s) : n° 102277 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] humidité du sol
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] mosaïquage d'images
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] puits de carbone
[Termes IGN] réflectance spectrale
[Termes IGN] série temporelle
[Termes IGN] sol nu
[Termes IGN] surface cultivée
[Termes IGN] teneur en carbone
[Termes IGN] terre arable
[Termes IGN] Yvelines (78)Résumé : (auteur) The spatial assessment of soil organic carbon (SOC) is a major environmental challenge, notably for evaluating soil carbon stocks. Recent works have shown the capability of Sentinel-2 to predict SOC content over temperate agroecosystems characterized with annual crops. However, because spectral models are only applicable on bare soils, the mapping of SOC is often obtained on limited areas. A possible improvement for increasing the number of pixels on which SOC can be retrieved by inverting bare soil reflectance spectra, consists of using optical images acquired at several dates. This study compares different approaches of Sentinel–2 images temporal mosaicking to produce a composite multi-date bare soil image for predicting SOC content over agricultural topsoils. A first approach for temporal mosaicking was based on a per-pixel selection and was driven by soil surface characteristics: bare soil or dry bare soil with/without removing dry vegetation. A second approach for creating composite images was based on a per-date selection and driven either by the models performance from single-date, or by average soil surface indicators of bare soil or dry bare soil. To characterize soil surface, Sentinel-1 (S1)-derived soil moisture and/or spectral indices such as normalized difference vegetation index (NDVI), Normalized Burn Ratio 2 (NBR2), bare soil index (BSI) and a soil surface moisture index (S2WI) were used either separately or in combination. This study highlighted the following results: i) none of the temporal mosaic images improved model performance for SOC prediction compared to the best single-date image; ii) of the per-pixel approaches, temporal mosaics driven by the S1-derived moisture content, and to a lesser extent, by NBR2 index, outperformed the mosaic driven by the BSI index but they did not increase the bare soil area predicted; iii) of the per-date approaches, the best trade-off between predicted area and model performance was achieved from the temporal mosaic driven by the S1-derived moisture content (R2 ~ 0.5, RPD ~ 1.4, RMSE ~ 3.7 g.kg-1) which enabled to more than double (*2.44) the predicted area. This study suggests that a number of bare soil mosaics based on several indicators (moisture, bare soil, roughness…), preferably in combination, might maintain acceptable accuracies for SOC prediction whilst extending over larger areas than single-date images. Numéro de notice : A2021-238 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2020.102277 Date de publication en ligne : 14/12/2020 En ligne : https://doi.org/10.1016/j.jag.2020.102277 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97258
in International journal of applied Earth observation and geoinformation > vol 96 (April 2021) . - n° 102277[article]Apport des images Landsat à l’étude de l’évolution de l’occupation du sol dans la plaine de Saïss au Maroc, pour la période 1987-2018 / Abdelkader El Garouani in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)
[article]
Titre : Apport des images Landsat à l’étude de l’évolution de l’occupation du sol dans la plaine de Saïss au Maroc, pour la période 1987-2018 Type de document : Article/Communication Auteurs : Abdelkader El Garouani, Auteur ; Kamal Aharik, Auteur Année de publication : 2021 Article en page(s) : pp 173 - 188 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] changement d'occupation du sol
[Termes IGN] cultures irriguées
[Termes IGN] détection de changement
[Termes IGN] données spatiotemporelles
[Termes IGN] image Landsat
[Termes IGN] indice de végétation
[Termes IGN] Maroc
[Termes IGN] matrice de confusion
[Termes IGN] milieu urbain
[Termes IGN] plaine
[Termes IGN] terre arableRésumé : (Auteur) Cet article concerne la plaine de Saïss au Maroc et porte sur l’évolution de l’occupation et de l'utilisation des sols pour la période allant de 1987 à 2018. Cette plaine s’avère très importante au niveau économique pour le pays. La méthodologie adoptée comporte successivement le calcul d’indices spectraux à partir d’images Landsat (NDVI : Normalized Difference Vegetation Index, NDWI : Normalized Difference Water Index et NDBI : Normalized Difference Built-up Index), puis l’utilisation de l’algorithme de vraisemblance afin de réaliser quatre classifications thématiques pour les années 1987, 2003, 2014 et 2018. La précision globale de ces classifications est déterminée à partir de la matrice de confusion, et varie entre 83 et 87% ; le coefficient kappa est, pour les quatre années, supérieur à 0,80. Entre 1987 et 2018, les surfaces correspondant aux terres irriguées, aux oliviers et au milieu urbain, ont progressé respectivement de 123%, 136% et 115%. À l’inverse, les forêts, les parcours et les terres arables ont vu leur surface diminuer respectivement de 10%, 6% et 29%. Numéro de notice : A2021-910 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.52638/rfpt.2021.490 Date de publication en ligne : 13/12/2021 En ligne : https://doi.org/10.52638/rfpt.2021.490 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99300
in Revue Française de Photogrammétrie et de Télédétection > n° 223 (mars - décembre 2021) . - pp 173 - 188[article]Change detection work-flow for mapping changes from arable lands to permanent grasslands with advanced boosting methods / Jiří Šandera in Geodetski vestnik, vol 63 n° 3 (September - November 2019)
[article]
Titre : Change detection work-flow for mapping changes from arable lands to permanent grasslands with advanced boosting methods Type de document : Article/Communication Auteurs : Jiří Šandera, Auteur ; Přemysl Štych, Auteur Année de publication : 2019 Article en page(s) : pp 379 - 394 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage automatique
[Termes IGN] boosting adapté
[Termes IGN] carte d'occupation du sol
[Termes IGN] chaîne de traitement
[Termes IGN] changement d'occupation du sol
[Termes IGN] détection de changement
[Termes IGN] image Landsat
[Termes IGN] prairie
[Termes IGN] terre arableRésumé : (Auteur) The necessity of mapping changes in land cover categories based on satellite imageries is a challenging task especially in terms of arable land and grasslands. The phenological phases of arable lands change quickly while grasslands is more stable. It might be hard to capture these changes regarding the spectral overlap between crops in full growth and grass itself. We have introduced a relatively simple processing workflow with good efficiency and accuracy. Our proposed method utilises the combination of a Multivariate Alteration Change Detection Algorithm and an existing boosting method, such as the AdaBoost algorithm with different weak learners and the most recent one – Extreme Gradient Boosting that is actually a relatively new approach in remote sensing. According to the results, the highest overall accuracy is 89.51 %. The proposed process workflow was tested on Landsat data with 30 m spatial resolution, using open-source software: R and GRASS GIS, Orfeo Toolbox library. Numéro de notice : A2019-501 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.15292/geodetski-vestnik.2019.03.379-394 En ligne : http://dx.doi.org/10.15292/geodetski-vestnik.2019.03.379-394 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93783
in Geodetski vestnik > vol 63 n° 3 (September - November 2019) . - pp 379 - 394[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 139-2019031 RAB Revue Centre de documentation En réserve L003 Disponible Prediction of the presence of topsoil nitrogen from spaceborne hyperspectral data / Binny Gopal in Geocarto international, vol 30 n° 1 - 2 (January - February 2015)
[article]
Titre : Prediction of the presence of topsoil nitrogen from spaceborne hyperspectral data Type de document : Article/Communication Auteurs : Binny Gopal, Auteur ; Amba Shetty, Auteur ; B. J. Ramya, Auteur Année de publication : 2015 Article en page(s) : pp 82 - 92 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] azote
[Termes IGN] détection
[Termes IGN] état de surface du sol
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] Inde
[Termes IGN] régression non linéaire
[Termes IGN] système d'information géographique
[Termes IGN] terre arableRésumé : (auteur) Conventional methods of soil nitrogen extraction are time consuming, expensive and tedious. Remote sensing and Geographical Information System technologies can be used for the rapid and efficient prediction of the presence of soil nitrogen. However, studies are limited by and large to fields of larger and homogeneous units. This research concentrates on the prediction of topsoil nitrogen from harvested, scattered and small-sized agricultural fields of India using hyperspectral data. Spaceborne hyperspectral Hyperion data are used for the prediction of the presence of nitrogen. Multivariate partial least square regression method was used to predict the presence of nitrogen from reflectance. Reflectance data were pretreated using moving average and Savitzky–Golay filters which resulted in moderate prediction of R2 0.65 and 0.63 for calibration and validation, respectively. It can be inferred that Hyperion data can be effectively used for the prediction of the presence of soil nitrogen with a moderate level of accuracy even in case of scattered fields and fields of sizes approximately equal to the spatial resolution of the satellite. Numéro de notice : A2015-246 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2014.894585 En ligne : https://doi.org/10.1080/10106049.2014.894585 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76244
in Geocarto international > vol 30 n° 1 - 2 (January - February 2015) . - pp 82 - 92[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2015011 RAB Revue Centre de documentation En réserve L003 Disponible