ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) . vol 8 n° 9Paru le : 01/09/2019 |
[n° ou bulletin]
est un bulletin de ISPRS International journal of geo-information / International society for photogrammetry and remote sensing (1980 -) (2012 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierA filtering-based approach for improving crowdsourced GNSS traces in a data update context / Stefan Ivanovic in ISPRS International journal of geo-information, vol 8 n° 9 (September 2019)
[article]
Titre : A filtering-based approach for improving crowdsourced GNSS traces in a data update context Type de document : Article/Communication Auteurs : Stefan Ivanovic (1988 - 2020) , Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Sébastien Mustière , Auteur ; Thomas Devogele , Auteur Année de publication : 2019 Projets : 1-Pas de projet / Article en page(s) : 17 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage automatique
[Termes IGN] approche participative
[Termes IGN] base de données localisées
[Termes IGN] données localisées des bénévoles
[Termes IGN] filtrage du bruit
[Termes IGN] mise à jour de base de données
[Termes IGN] montagne
[Termes IGN] qualité des données
[Termes IGN] sport
[Termes IGN] système d'information géographique
[Termes IGN] trace GPS
[Termes IGN] valeur aberranteRésumé : (auteur) Traces collected by citizens using GNSS (Global Navigation Satellite System) devices during sports activities such as running, hiking or biking are now widely available through different sport-oriented collaborative websites. The traces are collected by citizens for their own purposes and frequently shared with the sports community on the internet. Our research assumption is that crowdsourced GNSS traces may be a valuable source of information to detect updates in authoritative datasets. Despite their availability, the traces present some issues such as poor metadata, attribute incompleteness and heterogeneous positional accuracy. Moreover, certain parts of the traces (GNSS points composing the traces) are results of the displacements made out of the existing paths. In our context (i.e., update authoritative data) these off path GNSS points are considered as noise and should be filtered. Two types of noise are examined in this research: Points representing secondary activities (e.g., having a lunch break) and points representing errors during the acquisition. The first ones we named secondary human behaviour (SHB), whereas we named the second ones outliers. The goal of this paper is to improve the smoothness of traces by detecting and filtering both SHB and outliers. Two methods are proposed. The first one allows for the detection secondary human behaviour by analysing only traces geometry. The second one is a rule-based machine learning method that detects outliers by taking into account the intrinsic characteristics of points composing the traces, as well as the environmental conditions during traces acquisition. The proposed approaches are tested on crowdsourced GNSS traces collected in mountain areas during sports activities. Numéro de notice : A2019-626 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi8090380 Date de publication en ligne : 30/08/2019 En ligne : https://doi.org/10.3390/ijgi8090380 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95359
in ISPRS International journal of geo-information > vol 8 n° 9 (September 2019) . - 17 p.[article]