Descripteur
Documents disponibles dans cette catégorie (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Broadcast ephemerides for LEO augmentation satellites based on nonsingular elements / Lingdong Meng in GPS solutions, vol 25 n° 4 (October 2021)
[article]
Titre : Broadcast ephemerides for LEO augmentation satellites based on nonsingular elements Type de document : Article/Communication Auteurs : Lingdong Meng, Auteur ; Junping Chen, Auteur ; Jiexian Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 129 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] élément orbital
[Termes IGN] éphémérides de satellite
[Termes IGN] modèle d'orbite
[Termes IGN] mouvement Képlerien
[Termes IGN] orbite basse
[Termes IGN] orbitographieRésumé : (auteur) Low earth orbit (LEO) satellite constellations have the potential to augment global navigation satellite system services. Among the ongoing tasks of LEO-based navigation, providing broadcast ephemerides that satisfy the accuracy requirement for positioning, navigation, and timing is one of the most critical prerequisites. Singularities can occur when fitting broadcast ephemeris parameters in the case of a small eccentricity or small or large inclination. We choose an improved nonsingular element set for the LEO broadcast ephemeris design. We establish suitable broadcast ephemeris models, considering the fit accuracy, number of parameters, orbital altitude, and inclination. The fit accuracy using different orbital altitudes, orbital inclinations, and eccentricities suggests that the optimal parameters are n˙, n¨, Crc3, Crs3, Cλc3, and Cλs3, together with the basic broadcast ephemeris model. After adding these six parameters, a fit accuracy of better than 10 cm can be achieved with a 20 min arc length and 500–1400 km orbital altitudes. The effects of the number of parameters, orbital altitude, inclination, and eccentricity on the fit accuracy are discussed in detail. Finally, the performance is validated with real LEO satellites to confirm the effectiveness of the proposed method. Numéro de notice : A2021-566 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-021-01162-7 Date de publication en ligne : 22/07/2021 En ligne : https://doi.org/10.1007/s10291-021-01162-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98135
in GPS solutions > vol 25 n° 4 (October 2021) . - n° 129[article]Integrated processing of ground- and space-based GPS observations: improving GPS satellite orbits observed with sparse ground networks / Wen Huang in Journal of geodesy, vol 94 n° 10 (October 2020)
[article]
Titre : Integrated processing of ground- and space-based GPS observations: improving GPS satellite orbits observed with sparse ground networks Type de document : Article/Communication Auteurs : Wen Huang, Auteur ; Benjamin Männel, Auteur ; Pierre Sakic-Kieffer, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 13 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Techniques orbitales
[Termes IGN] modèle d'orbite
[Termes IGN] orbite basse
[Termes IGN] orbite précise
[Termes IGN] orbitographie
[Termes IGN] orbitographie par GNSS
[Termes IGN] récepteur GPS
[Termes IGN] station GPSRésumé : (auteur) The precise orbit determination (POD) of Global Navigation Satellite System (GNSS) satellites and low Earth orbiters (LEOs) are usually performed independently. It is a potential way to improve the GNSS orbits by integrating LEOs onboard observations into the processing, especially for the developing GNSS, e.g., Galileo with a sparse sensor station network and Beidou with a regional distributed operating network. In recent years, few studies combined the processing of ground- and space-based GNSS observations. The integrated POD of GPS satellites and seven LEOs, including GRACE-A/B, OSTM/Jason-2, Jason-3 and, Swarm-A/B/C, is discussed in this study. GPS code and phase observations obtained by onboard GPS receivers of LEOs and ground-based receivers of the International GNSS Service (IGS) tracking network are used together in one least-squares adjustment. The POD solutions of the integrated processing with different subsets of LEOs and ground stations are analyzed in detail. The derived GPS satellite orbits are validated by comparing with the official IGS products and internal comparison based on the differences of overlapping orbits and satellite positions at the day-boundary epoch. The differences between the GPS satellite orbits derived based on a 26-station network and the official IGS products decrease from 37.5 to 23.9 mm (34% improvement) in 1D-mean RMS when adding seven LEOs. Both the number of the space-based observations and the LEO orbit geometry affect the GPS satellite orbits derived in the integrated processing. In this study, the latter one is proved to be more critical. By including three LEOs in three different orbital planes, the GPS satellite orbits improve more than from adding seven well-selected additional stations to the network. Experiments with a ten-station and regional network show an improvement of the GPS satellite orbits from about 25 cm to less than five centimeters in 1D-mean RMS after integrating the seven LEOs. Numéro de notice : A2020-630 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01424-1 Date de publication en ligne : 10/10/2020 En ligne : https://doi.org/10.1007/s00190-020-01424-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96049
in Journal of geodesy > vol 94 n° 10 (October 2020) . - 13 p.[article]Galileo and QZSS precise orbit and clock determination using new satellite metadata / Xingxing Li in Journal of geodesy, vol 93 n° 8 (August 2019)
[article]
Titre : Galileo and QZSS precise orbit and clock determination using new satellite metadata Type de document : Article/Communication Auteurs : Xingxing Li, Auteur ; Yongqiang Yuan, Auteur ; Jiande Huang, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 1123 - 1136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] centre de phase
[Termes IGN] constellation Galileo
[Termes IGN] données satellitaires
[Termes IGN] GIOVE (satellite)
[Termes IGN] horloge du satellite
[Termes IGN] lacet
[Termes IGN] métadonnées
[Termes IGN] modèle d'orbite
[Termes IGN] orbite précise
[Termes IGN] orbitographie
[Termes IGN] Quasi-Zenith Satellite System
[Termes IGN] rayonnement solaire
[Termes IGN] variance d'AllanRésumé : (auteur) During 2016–2018, satellite metadata/information including antenna parameters, attitude laws and physical characteristics such as mass, dimensions and optical properties were released for Galileo and QZSS (except for the QZS-1 optical coefficients). These metadata are critical for improving the accuracy of precise orbit and clock determination. In this contribution, we evaluate the benefits of these new metadata to orbit and clock in three aspects: the phase center offsets and variations (PCO and PCV), the yaw-attitude model and solar radiation pressure (SRP) model. The updating of Galileo PCO and PCV corrections, from the values estimated by Deutsches Zentrum für Luft- und Raumfahrt and Deutsches GeoForschungsZentrum to the chamber calibrations disclosed by new metadata, has only a slight influence on Galileo orbits, with overlap differences within only 1 mm. By modeling the yaw attitude of Galileo satellites and QZS-2 spacecraft (SVN J002) according to new published attitude laws, the residuals of ionosphere-free carrier-phase combinations can be obviously decreased in yaw maneuver seasons. With the new attitude models, the 3D overlap RMS in eclipse seasons can be decreased from 12.3 cm, 14.7 cm, 16.8 cm and 34.7 cm to 11.7 cm, 13.4 cm, 15.8 cm and 32.9 cm for Galileo In-Orbit Validation (IOV), Full Operational Capability (FOC), FOC in elliptical orbits (FOCe) and QZS-2 satellites, respectively. By applying the a priori box-wing SRP model with new satellite dimensions and optical coefficients, the 3D overlap RMS are 5.3 cm, 6.2 cm, 5.3 cm and 16.6 cm for Galileo IOV, FOCe, FOC and QZS-2 satellites, with improvements of 11.0%, 14.7%, 14.0% and 13.8% when compared with the updated Extended CODE Orbit Model (ECOM2). The satellite laser ranging (SLR) validation reveals that the a priori box-wing model has smaller mean biases of − 0.4 cm, − 0.4 cm and 0.6 cm for Galileo FOCe, FOC and QZS-2 satellites, while a slightly larger mean bias of − 1.0 cm is observed for Galileo IOV satellites. Moreover, the SLR residual dependencies of Galileo IOV and FOC satellites on the elongation angle almost vanish when the a priori box-wing SRP model is applied. As for satellite clocks, a visible bump appears in the Modified Allan deviation at integration time of 20,000 s for Galileo Passive Hydrogen Maser with ECOM2, while it almost vanishes when the a priori box-wing SRP model and new metadata are applied. The standard deviations of clock overlap can also be significantly reduced by using new metadata. Numéro de notice : A2019-383 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-019-01230-4 Date de publication en ligne : 02/02/2019 En ligne : https://doi.org/10.1007/s00190-019-01230-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93462
in Journal of geodesy > vol 93 n° 8 (August 2019) . - pp 1123 - 1136[article]CODE’s new solar radiation pressure model for GNSS orbit determination / Daniel Arnold in Journal of geodesy, vol 89 n° 8 (August 2015)
[article]
Titre : CODE’s new solar radiation pressure model for GNSS orbit determination Type de document : Article/Communication Auteurs : Daniel Arnold, Auteur ; Michael Meindl, Auteur ; Gerhard Beutler, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 775 - 791 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Technologies spatiales
[Termes IGN] géocentre
[Termes IGN] International GNSS Service
[Termes IGN] modèle d'orbite
[Termes IGN] orbitographie
[Termes IGN] rayonnement solaire
[Termes IGN] récepteur GLONASS
[Termes IGN] récepteur GPS
[Termes IGN] rotation de la TerreRésumé : (auteur) The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009–2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft’s solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which substantially reduces the spurious signals in the geocenter coordinate z (by about a factor of 2–6), reduces the orbit misclosures at the day boundaries by about 10 %, slightly improves the consistency of the estimated ERPs with those of the IERS 08 C04 Earth rotation series, and substantially reduces the systematics in the SLR validation of the GNSS orbits. Numéro de notice : A2015-376 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0814-4 Date de publication en ligne : 12/05/2015 En ligne : https://doi.org/10.1007/s00190-015-0814-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76854
in Journal of geodesy > vol 89 n° 8 (August 2015) . - pp 775 - 791[article]