International Journal of Remote Sensing IJRS / Remote sensing and photogrammetry society . vol 41 n° 12Paru le : 20/03/2020 |
[n° ou bulletin]
est un bulletin de International Journal of Remote Sensing IJRS / Remote sensing and photogrammetry society (1980 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierHow far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study / Enrico Borgogno Mondino in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)
[article]
Titre : How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study Type de document : Article/Communication Auteurs : Enrico Borgogno Mondino, Auteur ; Vanina Fissore, Auteur ; Michael J. Falkowski, Auteur ; Brian Palik, Auteur Année de publication : 2020 Article en page(s) : pp 4551 - 4569 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] auscultation topographique
[Termes IGN] diamètre des arbres
[Termes IGN] données dendrométriques
[Termes IGN] données lidar
[Termes IGN] feuillu
[Termes IGN] hauteur des arbres
[Termes IGN] image Landsat-OLI
[Termes IGN] inventaire forestier local
[Termes IGN] Minnesota (Etats-Unis)
[Termes IGN] modèle d'erreur
[Termes IGN] Pinophyta
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] surface forestière
[Termes IGN] télémètre laser aéroportéRésumé : (auteur) Aerial discrete return LiDAR (Light Detection And Ranging) technology (ALS – Aerial Laser Scanner) is now widely used for forest characterization due to its high accuracy in measuring vertical and horizontal forest structure. Random and systematic errors can still occur and these affect the native point cloud, ultimately degrading ALS data accuracy, especially when adopting datasets that were not natively designed for forest applications. A detailed understanding of how uncertainty of ALS data could affect the accuracy of derivable forest metrics (e.g. tree height, stem diameter, basal area) is required, looking for eventual error biases that can be possibly modelled to improve final accuracy. In this work a low-density ALS dataset, originally acquired by the State of Minnesota (USA) for non-forestry related purposes (i.e. topographic mapping), was processed attempting to characterize forest inventory parameters for the Cutfoot Sioux Experimental Forest (north-central Minnesota, USA). Since accuracy of estimates strictly depends on the applied species-specific dendrometric models a first required step was to map tree species over the forest. A rough classification, aiming at separating conifers from broadleaf, was achieved by processing a Landsat 8 OLI (Operational Land Imager) scene. ALS-derived forest metrics initially greatly overestimated those measured at the ground in 230 plots. Conversely, ALS-derived tree density was greatly underestimated. To reduce ALS uncertainty, trees belonging to the dominated plane were removed from the ground dataset, assuming that they could not properly be detected by low-density ALS measures. Consequently, MAE (Mean Absolute Error) values significantly decreased to 4.0 m for tree height and to 0.19 cm for diameter estimates. Remaining discrepancies were related to a bias affecting the native ALS point cloud, which was modelled and removed. Final MAE values were 1.32 m for tree height, 0.08 m for diameter, 8.5 m2 ha−1 for basal area, and 0.06 m for quadratic mean diameter. Specifically focusing on tree height and diameter estimates, the significance of differences between ground and ALS estimates was tested relative to the expected ‘best accuracy’. Results showed that after correction: 94.35% of tree height differences were lower than the corresponding reference value (2.86 m); 70% of tree diameter differences were lower than the corresponding reference value (4.5 cm for conifers and 6.8 cm for broadleaf). Finally, forest parameters were computed for the whole Cutfoot Sioux Experimental Forest. Main findings include: 1) all forest estimates based on a low-density ALS point cloud can be derived at plot level and not at a tree level; 2) tree height estimates obtained by low-density ALS point clouds at the plot level are highly reasonably accurate only after testing and modelling eventual error bias; 3) diameter, basal area, and quadratic mean diameter estimates have large uncertainties, suggesting the need for a higher point density and, probably, a better mapping of tree species (if possible) than achieved with a remote sensing-based approach. Numéro de notice : A2020-450 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723173 Date de publication en ligne : 20/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723173 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95535
in International Journal of Remote Sensing IJRS > vol 41 n° 12 (20 - 30 March 2020) . - pp 4551 - 4569[article]Extracting impervious surfaces from full polarimetric SAR images in different urban areas / Sara Attarchi in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)
[article]
Titre : Extracting impervious surfaces from full polarimetric SAR images in different urban areas Type de document : Article/Communication Auteurs : Sara Attarchi, Auteur Année de publication : 2020 Article en page(s) : pp 4644 - 4663 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de données
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image radar moirée
[Termes IGN] matrice de co-occurrence
[Termes IGN] niveau de gris (image)
[Termes IGN] polarimétrie radar
[Termes IGN] précision de la classification
[Termes IGN] radar à antenne synthétique
[Termes IGN] surface imperméable
[Termes IGN] surveillance de l'urbanisation
[Termes IGN] texture d'image
[Termes IGN] zone urbaineRésumé : (auteur) Accurate mapping of impervious surface in urban areas is of great demand in environmental and socio-economic studies since impervious surface growth is recognized as an indicator of urbanization. To demonstrate the potential of full polarimetric Synthetic Aperture Radar (SAR) in impervious surface detection in different urban areas, this study focused on the exploitation of only SAR data. Three cities with different levels of urbanization – Tehran, Kordkuy, and Arak – have been selected to reduce the effect of input data on achieved results. Advanced Land Observing Satellite/Phased Array L-band Synthetic Aperture Radar (ALOS/PALSAR) images have been classified by support vector machine (SVM) with the help of training data from high-resolution satellite images. Quantitative assessment of classification accuracy revealed that Kordkuy, a not fully developed city (i.e. 84.2%) has the lowest accuracy and Arak, a medium urbanized city, has the highest accuracy (i.e. 90.0%). To further explore the efficiency of full polarimetric SAR, grey level co-occurrence matrix (GLCM) texture of polarized bands has been extracted and put into the classification procedure. The texture information of SAR data provided positive contribution to the impervious surface estimation in three study cases. The improvement is especially noted in dark impervious surface class. All three study areas show an increase of about 6–8% in classification accuracy. The results prove that single use of full polarimetric SAR images holds high potential in identifying impervious surfaces in urban areas. The findings are of great importance in frequent urban impervious surface mapping and monitoring especially in cloud-prone area, where the use of optical data as well as the fusion of optic and SAR data are limited. Numéro de notice : A2020-451 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723178 Date de publication en ligne : 24/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723178 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95539
in International Journal of Remote Sensing IJRS > vol 41 n° 12 (20 - 30 March 2020) . - pp 4644 - 4663[article]A novel nonlinear hyperspectral unmixing approach for images of oil spills at sea / Ying Li in International Journal of Remote Sensing IJRS, vol 41 n° 12 (20 - 30 March 2020)
[article]
Titre : A novel nonlinear hyperspectral unmixing approach for images of oil spills at sea Type de document : Article/Communication Auteurs : Ying Li, Auteur ; Huimin Lu, Auteur ; Zhenduo Zhang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4684 - 4701 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] équation polynomiale
[Termes IGN] hydrocarbure
[Termes IGN] image hyperspectrale
[Termes IGN] marée noire
[Termes IGN] modèle non linéaire
[Termes IGN] pollution des mers
[Termes IGN] trigonométrieRésumé : (auteur) Hyperspectral remote sensing is currently being used to detect and monitor marine oil spills that cause damage to the environment. However, nonlinear interactions of oil and water make it difficult to extract their fractional abundances from the spectral response. Improving the modelling of nonlinear hyperspectral mixtures, which is required for a thorough and reliable characterization of the materials in an image, remains a challenging yet fundamental task. This study proposes a new model that combines polynomial and trigonometric systems to understand the nonlinear effects of oil and water spectral response. Although the model is nonlinear, unmixing is performed by solving a linear problem, thus allowing fast computation. Compared to classic polynomial models, the details of nonlinear interactions are better expressed and quantified, and the reconstruction accuracy and endmember abundance estimation are improved for both synthetic and real datasets. Both the polynomial and trigonometric parts of the model play important roles in characterizing nonlinearities, with statistically linear dependence areas covering more than 90% and 30%, respectively, in oil spill images sampled after the Deepwater Horizon explosion. Analysis of the experimental results suggests that the proposed model provides an efficient and accurate unmixing method that can be used to help design oil spill response plans. Numéro de notice : A2020-452 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1723179 Date de publication en ligne : 27/02/2020 En ligne : https://doi.org/10.1080/01431161.2020.1723179 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95540
in International Journal of Remote Sensing IJRS > vol 41 n° 12 (20 - 30 March 2020) . - pp 4684 - 4701[article]