International Journal of Remote Sensing IJRS / Remote sensing and photogrammetry society . vol 41 n° 16Paru le : 01/05/2020 |
[n° ou bulletin]
est un bulletin de International Journal of Remote Sensing IJRS / Remote sensing and photogrammetry society (1980 -)
[n° ou bulletin]
|
Dépouillements
Ajouter le résultat dans votre panierHyperspectral image clustering with Albedo recovery Fuzzy C-Means / Peyman Azimpour in International Journal of Remote Sensing IJRS, vol 41 n° 16 (01-10 May 2020)
[article]
Titre : Hyperspectral image clustering with Albedo recovery Fuzzy C-Means Type de document : Article/Communication Auteurs : Peyman Azimpour, Auteur ; R. Shad, Auteur ; M. Ghaemi, Auteur ; H. Etemadfard, Auteur Année de publication : 2020 Article en page(s) : pp 6117 - 6134 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] albedo
[Termes IGN] classification floue
[Termes IGN] image hyperspectrale
[Termes IGN] regroupement de données
[Termes IGN] télédétectionRésumé : (auteur) Hyperspectral image clustering is usually used for unsupervised learning in different applications. However, the traditional clustering methods have not been considered the complex relationships among neighbouring pixels. The Albedo and Shading elements can define pixel values in the HyperSpectral Images (HSIs). In HSIs, features are different from each other because of their natural physical characteristics and the physical nature of different image features can be described by the Albedo element. Therefore, in this paper, we generate the natural Albedo feature of the HSIs by applying Albedo recovery step to exploit main information from HSIs. Then, we utilized the Fuzzy C-means clustering method to cluster the natural Albedo dataset. In this paper, we propose a novel accurate Albedo Recovery based Fuzzy C-Means (ARFCM) method to cluster HSIs. In the dataset, each feature vector is processed by the Albedo recovery step to create a new feature vector. This new feature vector can describe the dataset better than the original one. Comparing clustering methods as one of the powerful clustering algorithms are widely used in the remote sensing fields of studying. The experiments conducted on several benchmark datasets demonstrated that the proposed clustering method achieves higher performance than other methods and present the efficiency and effectiveness of the proposed method. The results of experiments over different HSI datasets indicated that the proposed method could produce reliable and suitable results compared to the other methods. This shows the robustness of the proposed ARFCM algorithm over the various HSI datasets. Other methods may provide a good response in a given dataset and do not perform well in the other data. Consequently, the ARFCM method, regardless of the study area characteristics and the sensor features, always renders remarkable clustering accuracy. Numéro de notice : A2020-453 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1736728 Date de publication en ligne : 01/06/2020 En ligne : https://doi.org/10.1080/01431161.2020.1736728 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95542
in International Journal of Remote Sensing IJRS > vol 41 n° 16 (01-10 May 2020) . - pp 6117 - 6134[article]Outlier detection and robust plane fitting for building roof extraction from LiDAR data / Emon Kumar Dey in International Journal of Remote Sensing IJRS, vol 41 n° 16 (01-10 May 2020)
[article]
Titre : Outlier detection and robust plane fitting for building roof extraction from LiDAR data Type de document : Article/Communication Auteurs : Emon Kumar Dey, Auteur ; Mohammad Awrangjeb, Auteur ; Bela Stantic, Auteur Année de publication : 2020 Article en page(s) : pp 6325 - 6354 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] semis de points
[Termes IGN] toit
[Termes IGN] valeur aberranteRésumé : (auteur) Individual roof plane extraction from Light Detection and Ranging (LiDAR) point-cloud data is a complex and difficult task because of unknown semantic characteristics and inharmonious behaviour of input data. Most of the existing state-of-the-art methods fail to detect small true roof planes with exact boundaries due to outliers, occlusions, complex building structures, and other inconsistent nature of LiDAR data. In this paper, we have presented an improved building detection and roof plane extraction method, which is less sensitive to the outliers and unlikely to generate spurious planes. For this, a robust outlier detection algorithm has been proposed in this paper along with a robust plane-fitting algorithm based on M-estimator SAmple Consensus (MSAC) for detecting individual roof planes. Using two benchmark datasets (Australian and International Society for Photogrammetry and Remote Sensing benchmark) with different numbers of buildings and sizes, trees and point densities, we have evaluated the proposed method. Experimental results show that the method removes outliers and vegetation almost accurately and offers a high success rate in terms of completeness and correctness (between 80% and 100% per-object) for both roof plane extraction and building detection. In most of the cases, the proposed method shows above 90% correctness. Numéro de notice : A2020-454 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2020.1737339 Date de publication en ligne : 09/06/2020 En ligne : https://doi.org/10.1080/01431161.2020.1737339 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95543
in International Journal of Remote Sensing IJRS > vol 41 n° 16 (01-10 May 2020) . - pp 6325 - 6354[article]