Descripteur
Termes IGN > mathématiques > algorithmique > algorithme espérance-maximisation
algorithme espérance-maximisationVoir aussi |
Documents disponibles dans cette catégorie (12)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A robust nonrigid point set registration framework based on global and intrinsic topological constraints / Guiqiang Yang in The Visual Computer, vol 38 n° 2 (February 2022)
[article]
Titre : A robust nonrigid point set registration framework based on global and intrinsic topological constraints Type de document : Article/Communication Auteurs : Guiqiang Yang, Auteur ; Rui Li, Auteur ; Yujun Liu, Auteur ; Ji Wang, Auteur Année de publication : 2022 Article en page(s) : pp 603 - 623 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] algorithme espérance-maximisation
[Termes IGN] contrainte géométrique
[Termes IGN] contrainte topologique
[Termes IGN] descripteur local
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] méthode robuste
[Termes IGN] processus gaussien
[Termes IGN] semis de points
[Termes IGN] superposition de donnéesRésumé : (auteur) The problem of registering nonrigid point sets, with the aim of estimating the correspondences and learning the transformation between two given sets of points, often arises in computer vision tasks. This paper proposes a novel method for performing nonrigid point set registration on data with various types of degradation, in which the registration problem is formulated as a Gaussian mixture model (GMM)-based density estimation problem. Specifically, two complementary constraints are jointly considered for optimization in a GMM probabilistic framework. The first is a thin-plate spline-based regularization constraint that maintains global spatial motion consistency, and the second is a spectral graph-based regularization constraint that preserves the intrinsic structure of a point set. Moreover, the correspondences and the transformation are alternately optimized using the expectation maximization algorithm to obtain a closed-form solution. We first utilize local descriptors to construct the initial correspondences and then estimate the underlying transformation under the GMM-based framework. Experimental results on contour images and real images show the effectiveness and robustness of the proposed method. Numéro de notice : A2022-146 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s00371-020-02037-7 Date de publication en ligne : 21/02/2022 En ligne : https://doi.org/10.1007/s00371-020-02037-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100040
in The Visual Computer > vol 38 n° 2 (February 2022) . - pp 603 - 623[article]Modeling in forestry using mixture models fitted to grouped and ungrouped data / Eric K. Zenner in Forests, vol 12 n° 9 (September 2021)
[article]
Titre : Modeling in forestry using mixture models fitted to grouped and ungrouped data Type de document : Article/Communication Auteurs : Eric K. Zenner, Auteur ; Mahdi Teimouri, Auteur Année de publication : 2021 Article en page(s) : n° 1196 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] algorithme espérance-maximisation
[Termes IGN] complexité
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] distribution de Weibull
[Termes IGN] distribution, loi de
[Termes IGN] dynamique de la végétation
[Termes IGN] estimation par noyau
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modélisation de la forêt
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) The creation and maintenance of complex forest structures has become an important forestry objective. Complex forest structures, often expressed in multimodal shapes of tree size/diameter (DBH) distributions, are challenging to model. Mixture probability density functions of two- or three-component gamma, log-normal, and Weibull mixture models offer a solution and can additionally provide insights into forest dynamics. Model parameters can be efficiently estimated with the maximum likelihood (ML) approach using iterative methods such as the Newton-Raphson (NR) algorithm. However, the NR algorithm is sensitive to the choice of initial values and does not always converge. As an alternative, we explored the use of the iterative expectation-maximization (EM) algorithm for estimating parameters of the aforementioned mixture models because it always converges to ML estimators. Since forestry data frequently occur both in grouped (classified) and ungrouped (raw) forms, the EM algorithm was applied to explore the goodness-of-fit of the gamma, log-normal, and Weibull mixture distributions in three sample plots that exhibited irregular, multimodal, highly skewed, and heavy-tailed DBH distributions where some size classes were empty. The EM-based goodness-of-fit was further compared against a nonparametric kernel-based density estimation (NK) model and the recently popularized gamma-shaped mixture (GSM) models using the ungrouped data. In this example application, the EM algorithm provided well-fitting two- or three-component mixture models for all three model families. The number of components of the best-fitting models differed among the three sample plots (but not among model families) and the mixture models of the log-normal and gamma families provided a better fit than the Weibull distribution for grouped and ungrouped data. For ungrouped data, both log-normal and gamma mixture distributions outperformed the GSM model and, with the exception of the multimodal diameter distribution, also the NK model. The EM algorithm appears to be a promising tool for modeling complex forest structures. Numéro de notice : A2021-721 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f12091196 En ligne : https://doi.org/10.3390/f12091196 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98639
in Forests > vol 12 n° 9 (September 2021) . - n° 1196[article]
Titre : Data science: Measuring uncertainties Type de document : Monographie Auteurs : Carlos Alberto De Bragança Pereira, Éditeur scientifique ; Adriano Polpo, Éditeur scientifique ; Agatha Rodrigues, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2021 Importance : 256 p. Format : 17 x 25 cm ISBN/ISSN/EAN : 978-3-0365-0793-4 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Informatique
[Termes IGN] algorithme espérance-maximisation
[Termes IGN] analyse de groupement
[Termes IGN] données massives
[Termes IGN] entropie maximale
[Termes IGN] équation de Riccati
[Termes IGN] estimation bayesienne
[Termes IGN] filtre de Kalman
[Termes IGN] inférence statistique
[Termes IGN] information sémantique
[Termes IGN] intelligence artificielle
[Termes IGN] logique floue
[Termes IGN] science des donnéesRésumé : (éditeur) With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems. Note de contenu : 1- An integrated approach for making inference on the number of clusters in a mixture model
2- Universal sample size invariant measures for uncertainty quantification in density estimation
3- Prior sensitivity analysis in a semi-parametric integer-valued time series model
4- The decomposition and forecasting of mutual investment funds using singular spectrum analysis
5- Channels’ confirmation and predictions’ confirmation: From the medical test to the raven paradox
6- On a class of tensor Markov fields
7- Objective Bayesian inference in probit models with intrinsic priors using variational approximations
8- A new multi-attribute emergency decision-making algorithm based on intuitionistic fuzzy cross-entropy and comprehensive grey correlation analysis
9- Cointegration and unit root tests: A fully Bayesian approach
10- A novel perspective of the Kalman filter from the Renyi entropy
11- Application of cloud model in qualitative forecasting for stock market trends
12- A novel comprehensive evaluation method for estimating the bank profile shape and dimensions of stable channels using the maximum entropy principleNuméro de notice : 28636 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/MATHEMATIQUE/SOCIETE NUMERIQUE Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-0365-0793-4 En ligne : https://doi.org/10.3390/books978-3-0365-0793-4 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99694 Self-tuning robust adjustment within multivariate regression time series models with vector-autoregressive random errors / Boris Kargoll in Journal of geodesy, vol 94 n° 5 (May 2020)
[article]
Titre : Self-tuning robust adjustment within multivariate regression time series models with vector-autoregressive random errors Type de document : Article/Communication Auteurs : Boris Kargoll, Auteur ; Gaël Kermarrec, Auteur ; Hamza Alkhatib, Auteur ; Johannes Korte, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] algorithme espérance-maximisation
[Termes IGN] analyse vectorielle
[Termes IGN] auto-régression
[Termes IGN] bruit blanc
[Termes IGN] corrélation croisée normalisée
[Termes IGN] erreur aléatoire
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle stochastique
[Termes IGN] régression linéaire
[Termes IGN] série temporelle
[Termes IGN] station GPS
[Termes IGN] valeur aberranteRésumé : (auteur) The iteratively reweighted least-squares approach to self-tuning robust adjustment of parameters in linear regression models with autoregressive (AR) and t-distributed random errors, previously established in Kargoll et al. (in J Geod 92(3):271–297, 2018. https://doi.org/10.1007/s00190-017-1062-6), is extended to multivariate approaches. Multivariate models are used to describe the behavior of multiple observables measured contemporaneously. The proposed approaches allow for the modeling of both auto- and cross-correlations through a vector-autoregressive (VAR) process, where the components of the white-noise input vector are modeled at every time instance either as stochastically independent t-distributed (herein called “stochastic model A”) or as multivariate t-distributed random variables (herein called “stochastic model B”). Both stochastic models are complementary in the sense that the former allows for group-specific degrees of freedom (df) of the t-distributions (thus, sensor-component-specific tail or outlier characteristics) but not for correlations within each white-noise vector, whereas the latter allows for such correlations but not for different dfs. Within the observation equations, nonlinear (differentiable) regression models are generally allowed for. Two different generalized expectation maximization (GEM) algorithms are derived to estimate the regression model parameters jointly with the VAR coefficients, the variance components (in case of stochastic model A) or the cofactor matrix (for stochastic model B), and the df(s). To enable the validation of the fitted VAR model and the selection of the best model order, the multivariate portmanteau test and Akaike’s information criterion are applied. The performance of the algorithms and of the white noise test is evaluated by means of Monte Carlo simulations. Furthermore, the suitability of one of the proposed models and the corresponding GEM algorithm is investigated within a case study involving the multivariate modeling and adjustment of time-series data at four GPS stations in the EUREF Permanent Network (EPN). Numéro de notice : A2020-291 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01376-6 Date de publication en ligne : 10/05/2020 En ligne : https://doi.org/10.1007/s00190-020-01376-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95120
in Journal of geodesy > vol 94 n° 5 (May 2020)[article]Robust deformation monitoring of bridge structures using MEMS accelerometers and image-assisted total stations / Mohammad Omidalizarandi (2020)
Titre : Robust deformation monitoring of bridge structures using MEMS accelerometers and image-assisted total stations Type de document : Thèse/HDR Auteurs : Mohammad Omidalizarandi, Auteur Editeur : Munich : Bayerische Akademie der Wissenschaften Année de publication : 2020 Collection : DGK - C, ISSN 0065-5325 num. 859 Importance : 260 p. Format : 21 x 30 cm Note générale : bibliographie
Diese Arbeit ist gleichzeitig veröffentlicht in: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Universität Hannover, ISSN 0174-1454, Nr. 366Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] accéléromètre
[Termes IGN] algorithme espérance-maximisation
[Termes IGN] auscultation d'ouvrage
[Termes IGN] méthode robuste
[Termes IGN] microsystème électromécanique
[Termes IGN] pont
[Termes IGN] surveillance d'ouvrage
[Termes IGN] tachéomètre électronique
[Termes IGN] topométrie de précisionRésumé : (auteur) Today, short- and long-term structural health monitoring (SHM) of bridge structures has received considerable attention. However, permanent, cost-effective, and reliable monitoring are still challenging issues. From a surveying or civil engineer's point of view, vibration-based SHM is often carried out by inspecting the changes in the dynamic responses of bridge structures known as modal parameters, such as eigen frequencies, eigenforms and modal damping. The use of cost-effective micro-electro-mechanical-systems (MEMS) accelerometers with a high sampling frequency is becoming more affordable and feasible for the aforementioned monitoring task. Within this dissertation, a three-step scenario is proposed to choose a suitable MEMS accelerometer despite of its purchase price, measurement range and sampling frequency. Firstly, a robust calibration procedure is proposed and implemented to model MEMS related systematic errors such as biases, scale factors, and non-orthogonality angles between the axes. Secondly, a controlled excitation experiment is conducted by using a high-precision shaker. Thirdly, a statictest experiment is accomplished over a long period. Robust, accurate, and automatic estimation of the modal parameters is particularly challenging when vibration measurements are contaminated with a high coloured measurement noise, e.g., due to cost-effective MEMS acceleration data. This is even more challenging when the structure is continuously under imposed forces due to moving vehicles or wind. For this purpose, a robust and automatic vibration analysis procedure the so–called robust time domain modal parameter identification (RT-MPI) approach is proposed and implemented. It is a novel approach in the sense of automatic excitation (e.g. ambient) window selection, automatic and reliable identification of initial eigen frequencies even closely spaced ones as well as robustly and accurately estimating the modal parameters. To estimate frequencies, damping ratio coefficients, amplitudes, and phase shifts, an observation model consisting of a damped harmonic oscillation (DHO) model, an autoregressive model of coloured measurement noise and a stochastic model in the form of the heavy-tailed family of scaled t-distributions with unknown degree of freedom and scale factor, is employed. The aforementioned three parametric models are jointly adjusted by means of a generalised expectation maximisation (GEM) algorithm. The proposed RT-MPI algorithm is also able to estimate amplitudes in a metric unit and with a high accuracy for the recorded acceleration data by means of double integration of the DHO model. The eigenforms are characterised in a subsequent step, and by using the estimated parameters from the GEM algorithm. In addition, having amplitudes in the metric unit allows to characterise deflection eigen forms in their true scales for selected excitation windows within short time intervals. The deformation/displacement monitoring by merely using the MEMS accelerometer is challenging, since it suffers from accuracy degradation with time for absolute position/displacement estimates. Therefore, the MEMS accelerometers and an image-assisted total station (IATS) are fused by performing one-dimensional (1D) coordinate update within the Kalman filtering framework. To generate 1D displacement data from the IATS, video frames of a passive target, that is attached to a bridge structure, are captured by means of a telescope camera of the IATS. A passive target centroid detection algorithm is proposed and implemented, which is robust and reliable with respect to poor environmental conditions, such as low lighting, dusty situations, and skewed angle targets. Next, an angular conversion factor of the telescope camera is calibrated, which allows to convert the generated displacement data from pixel to metric unit.
Experiments are performed in four case studies including simulation, controlled excitation and two real applications of a footbridge structure and a synthetic bridge. The estimated modal parameters are compared and validated by their true values as well as their corresponding estimates obtained from reference sensors such as reference accelerometer, geophone, and laser tracker. Additionally, the estimated eigen frequencies and damping ratio coefficients are compared with a well-known covariance driven stochastic subspace identification (SSI-COV) approach. The results show that the MEMS accelerometers are suitable for identifying all occurring eigen frequencies of the bridge structures. Moreover, the vibration analysis procedure demonstrates that amplitudes are estimated in submillimetre range accuracy, frequencies with an accuracy of better than 0.1 Hz and damping ratio coefficients with an accuracy of better than 0.1 and 0.2%for modal and system damping, respectively. The analysis reveals the superiority of the proposed RT-MPI algorithm compared to the SSI-COV algorithm. Finally, a high accurate displacement time series at the level of submillimetre is generated by fusion of the IATS and the MEMS measurements.Numéro de notice : 17680 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère En ligne : https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-859.pdf Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98021 A factor model approach for the joint segmentation with between‐series correlation / Xavier Collilieux in Scandinavian Journal of Statistics, vol 46 n° 3 (September 2019)PermalinkRobust external calibration of terrestrial laser scanner and digital camera for structural monitoring / Mohammad Omidalizarandi in Journal of applied geodesy, vol 13 n° 2 (April 2019)PermalinkUnsupervised object-based differencing for land-cover change detection / Jinxia Zhu in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 3 (March 2017)Permalink7e conférence francophone sur l'apprentissage automatique, CAp 2005, [Plate-forme AFIA], 30 mai - 3 juin 2005, Nice, France / François Denis (2005)PermalinkInitial analysis and visualization of waveform laser scanner data / Johanna Töpel (2005)PermalinkEléments de modélisation pour l'analyse d'images / Bernard Chalmond (2000)PermalinkSystème multi-agents d’aide à la photo-interprétation sur architecture multiprocesseur / Valéry Lefèvre (1994)Permalink