Paru le : 01/09/2020 |
[n° ou bulletin]
[n° ou bulletin]
|
Exemplaires(1)
Code-barres | Cote | Support | Localisation | Section | Disponibilité |
---|---|---|---|---|---|
079-2020091 | RAB | Revue | Centre de documentation | En réserve L003 | Disponible |
Dépouillements
Ajouter le résultat dans votre panierA spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery / Bo Yang in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
[article]
Titre : A spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery Type de document : Article/Communication Auteurs : Bo Yang, Auteur ; Lin Liu, Auteur ; Minxuan Lan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1740 - 1764 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] coefficient de corrélation
[Termes IGN] criminalité
[Termes IGN] données spatiotemporelles
[Termes IGN] géostatistique
[Termes IGN] historique des données
[Termes IGN] image NPP-VIIRS
[Termes IGN] krigeage
[Termes IGN] modèle dynamique
[Termes IGN] nuit
[Termes IGN] Ohio (Etats-Unis)
[Termes IGN] prédiction
[Termes IGN] prévention des risques
[Termes IGN] prise de vue nocturne
[Termes IGN] test statistique
[Termes IGN] zone urbaineRésumé : (auteur) Accurate crime prediction can help allocate police resources for crime reduction and prevention. There are two popular approaches to predict criminal activities: one is based on historical crime, and the other is based on environmental variables correlated with criminal patterns. Previous research on geo-statistical modeling mainly considered one type of data in space-time domain, and few sought to blend multi-source data. In this research, we proposed a spatio-temporal Cokriging algorithm to integrate historical crime data and urban transitional zones for more accurate crime prediction. Time-series historical crime data were used as the primary variable, while urban transitional zones identified from the VIIRS nightlight imagery were used as the secondary co-variable. The algorithm has been applied to predict weekly-based street crime and hotspots in Cincinnati, Ohio. Statistical tests and Predictive Accuracy Index (PAI) and Predictive Efficiency Index (PEI) tests were used to validate predictions in comparison with those of the control group without using the co-variable. The validation results demonstrate that the proposed algorithm with historical crime data and urban transitional zones increased the correlation coefficient by 5.4% for weekdays and by 12.3% for weekends in statistical tests, and gained higher hit rates measured by PAI/PEI in the hotspots test. Numéro de notice : A2020-475 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1737701 Date de publication en ligne : 13/03/2020 En ligne : https://doi.org/10.1080/13658816.2020.1737701 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95622
in International journal of geographical information science IJGIS > vol 34 n° 9 (September 2020) . - pp 1740 - 1764[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020091 RAB Revue Centre de documentation En réserve L003 Disponible Volunteered geographic information research in the first decade: a narrative review of selected journal articles in GIScience / Yingwei Yan in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
[article]
Titre : Volunteered geographic information research in the first decade: a narrative review of selected journal articles in GIScience Type de document : Article/Communication Auteurs : Yingwei Yan, Auteur ; Chen-Chieh Feng, Auteur ; Wei Huang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1765 - 1791 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] données localisées des bénévoles
[Termes IGN] GeoWeb
[Termes IGN] littérature
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] presse (media)
[Termes IGN] problème de Dirichlet
[Termes IGN] qualité des données
[Termes IGN] recherche
[Termes IGN] réseau social
[Termes IGN] SIG participatif
[Termes IGN] source de données
[Termes IGN] système d'information géographique
[Termes IGN] Twitter
[Termes IGN] utilisation du sol
[Termes IGN] WikimapiaRésumé : (auteur) More than 10 years have passed since the coining of the term volunteered geographic information (VGI) in 2007. This article presents the results of a review of the literature concerning VGI. A total of 346 articles published in 24 international refereed journals in GIScience between 2007 and 2017 have been reviewed. The review has uncovered varying levels of popularity of VGI research over space and time, and varying interests in various sources of VGI (e.g. OpenStreetMap) and VGI-related terms (e.g. user-generated content) that point to the multi-perspective nature of VGI. Content-wise, using latent Dirichlet allocation (LDA), this study has extracted 50 specific research topics pertinent to VGI. The 50 topics have been subsequently clustered into 13 intermediate topics and three overarching themes to allow a hierarchical topic review. The overarching VGI research themes include (1) VGI contributions and contributors, (2) main fields applying VGI, and (3) conceptions and envisions. The review of the articles under the three themes has revealed the progress and the points that demand attention regarding the individual topics. This article also discusses the areas that the existing research has not yet adequately explored and proposes an agenda for potential future research endeavors. Numéro de notice : A2020-476 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1730848 Date de publication en ligne : 26/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1730848 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95623
in International journal of geographical information science IJGIS > vol 34 n° 9 (September 2020) . - pp 1765 - 1791[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020091 RAB Revue Centre de documentation En réserve L003 Disponible An overview of clustering methods for geo-referenced time series: from one-way clustering to co- and tri-clustering / Xiaojing Wu in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
[article]
Titre : An overview of clustering methods for geo-referenced time series: from one-way clustering to co- and tri-clustering Type de document : Article/Communication Auteurs : Xiaojing Wu, Auteur ; Changxiu Cheng, Auteur ; Raul Zurita-Milla, Auteur Année de publication : 2020 Article en page(s) : pp 1822 - 1848 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatio-temporelle
[Termes IGN] classification barycentrique
[Termes IGN] classification par nuées dynamiques
[Termes IGN] exploration de données
[Termes IGN] géoréférencement
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] regroupement de données
[Termes IGN] série temporelle
[Termes IGN] taxinomieRésumé : (auteur) Even though many studies have shown the usefulness of clustering for the exploration of spatio-temporal patterns, until now there is no systematic description of clustering methods for geo-referenced time series (GTS) classified as one-way clustering, co-clustering and tri-clustering methods. Moreover, the selection of a suitable clustering method for a given dataset and task remains to be a challenge. Therefore, we present an overview of existing clustering methods for GTS, using the aforementioned classification, and compare different methods to provide suggestions for the selection of appropriate methods. For this purpose, we define a taxonomy of clustering-related geographical questions and compare the clustering methods by using representative algorithms and a case study dataset. Our results indicate that tri-clustering methods are more powerful in exploring complex patterns at the cost of additional computational effort, whereas one-way clustering and co-clustering methods yield less complex patterns and require less running time. However, the selection of the most suitable method should depend on the data type, research questions, computational complexity, and the availability of the methods. Finally, the described classification can include novel clustering methods, thereby enabling the exploration of more complex spatio-temporal patterns. Numéro de notice : A2020-477 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1726922 Date de publication en ligne : 16/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1726922 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95624
in International journal of geographical information science IJGIS > vol 34 n° 9 (September 2020) . - pp 1822 - 1848[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020091 RAB Revue Centre de documentation En réserve L003 Disponible NEAT approach for testing and validation of geospatial network agent-based model processes: case study of influenza spread / Taylor Anderson in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
[article]
Titre : NEAT approach for testing and validation of geospatial network agent-based model processes: case study of influenza spread Type de document : Article/Communication Auteurs : Taylor Anderson, Auteur ; Suzana Dragićević, Auteur Année de publication : 2020 Article en page(s) : pp 1792 - 1821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] agent (intelligence artificielle)
[Termes IGN] épidémie
[Termes IGN] interaction spatiale
[Termes IGN] modèle orienté agent
[Termes IGN] outil d'aide à la décision
[Termes IGN] théorie des graphes
[Termes IGN] Vancouver (Colombie britannique)Résumé : (auteur) Agent-based models (ABM) are used to represent a variety of complex systems by simulating the local interactions between system components from which observable spatial patterns at the system-level emerge. Thus, the degree to which these interactions are represented correctly must be evaluated. Networks can be used to discretely represent and quantify interactions between system components and the emergent system structure. Therefore, the main objective of this study is to develop and implement a novel validation approach called the NEtworks for ABM Testing (NEAT) that integrates geographic information science, ABM approaches, and spatial network representations to simulate complex systems as measurable and dynamic spatial networks. The simulated spatial network structures are measured using graph theory and compared with empirical regularities of observed real networks. The approach is implemented to validate a theoretical ABM representing the spread of influenza in the City of Vancouver, Canada. Results demonstrate that the NEAT approach can validate whether the internal model processes are represented realistically, thus better enabling the use of ABMs in decision-making processes. Numéro de notice : A2020-478 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1741000 Date de publication en ligne : 06/04/2020 En ligne : https://doi.org/10.1080/13658816.2020.1741000 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95625
in International journal of geographical information science IJGIS > vol 34 n° 9 (September 2020) . - pp 1792 - 1821[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020091 RAB Revue Centre de documentation En réserve L003 Disponible A lightweight ensemble spatiotemporal interpolation model for geospatial data / Shifen Cheng in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
[article]
Titre : A lightweight ensemble spatiotemporal interpolation model for geospatial data Type de document : Article/Communication Auteurs : Shifen Cheng, Auteur ; Peng Peng, Auteur ; Feng Lu, Auteur Année de publication : 2020 Article en page(s) : pp 1849 - 1872 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] coefficient de corrélation
[Termes IGN] distance pondérée
[Termes IGN] données localisées
[Termes IGN] erreur absolue
[Termes IGN] interpolation spatiale
[Termes IGN] lissage de données
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] requête spatiotemporelleRésumé : (auteur) Missing data is a common problem in the analysis of geospatial information. Existing methods introduce spatiotemporal dependencies to reduce imputing errors yet ignore ease of use in practice. Classical interpolation models are easy to build and apply; however, their imputation accuracy is limited due to their inability to capture spatiotemporal characteristics of geospatial data. Consequently, a lightweight ensemble model was constructed by modelling the spatiotemporal dependencies in a classical interpolation model. Temporally, the average correlation coefficients were introduced into a simple exponential smoothing model to automatically select the time window which ensured that the sample data had the strongest correlation to missing data. Spatially, the Gaussian equivalent and correlation distances were introduced in an inverse distance-weighting model, to assign weights to each spatial neighbor and sufficiently reflect changes in the spatiotemporal pattern. Finally, estimations of the missing values from temporal and spatial were aggregated into the final results with an extreme learning machine. Compared to existing models, the proposed model achieves higher imputation accuracy by lowering the mean absolute error by 10.93 to 52.48% in the road network dataset and by 23.35 to 72.18% in the air quality station dataset and exhibits robust performance in spatiotemporal mutations. Numéro de notice : A2020-484 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1725016 Date de publication en ligne : 12/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1725016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95651
in International journal of geographical information science IJGIS > vol 34 n° 9 (September 2020) . - pp 1849 - 1872[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020091 RAB Revue Centre de documentation En réserve L003 Disponible