Descripteur
Documents disponibles dans cette catégorie (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Assessing road accidents in spatial context via statistical and non-statistical approaches to detect road accident hotspot using GIS / Yegane Khosravi in Geodetski vestnik, vol 66 n° 3 (September - November 2022)
[article]
Titre : Assessing road accidents in spatial context via statistical and non-statistical approaches to detect road accident hotspot using GIS Type de document : Article/Communication Auteurs : Yegane Khosravi, Auteur ; Farhad Hosseinali, Auteur ; Mostafa Adresi, Auteur Année de publication : 2022 Article en page(s) : pp 412 - 431 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accident de la route
[Termes IGN] analyse de groupement
[Termes IGN] autocorrélation spatiale
[Termes IGN] classification par nuées dynamiques
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] distance de Manhattan
[Termes IGN] estimation par noyau
[Termes IGN] Iran
[Termes IGN] méthode statistique
[Termes IGN] pente
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] regroupement de données
[Termes IGN] système d'information géographiqueRésumé : (auteur) Road accidents are among the most critical causes of fatality, personal injuries, and financial damage worldwide. Identifying accident hotspots and the causes of accidents and improving the condition of these hotspots is an economical way to improve road traffic safety. In this study, to identify the accident hotspots of “Dehbala” road located in Yazd province-Iran, statistical and non-statistical clustering methods were used. First, the weighting of the criteria was performed by an expert using the AHP method. Hence, the spatial correlation of slope and curvature was calculated by Global Moran’I. Anselin Local Moran index and Getis-Ord Gi* and Kernel Density Estimation were used to identify accident hotspots based on accident location due to the density of points. As a result, four accident hotspots were obtained by the Anselin Local Moran index, three accident hotspots by Getis-Ord Gi*and one accident-prone area were obtained by Kernel Density Estimation method. Three algorithms, k-means, k-medoids, and DBSCAN, were used to identify accident-prone areas or points using non-statistical methods. The dense cluster of each method was considered as an accident-prone cluster. Then the results of statistical and non- statistical methods were intersected with each other and the final accident-prone area was obtained. This study revealed the effect of geometric charcateristics of the road (slope and curvature) on the occurance of accidents. Numéro de notice : A2022-781 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.15292/geodetski-vestnik.2022.03.412-431 Date de publication en ligne : 04/08/2022 En ligne : https://doi.org/10.15292/geodetski-vestnik.2022.03.412-431 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101864
in Geodetski vestnik > vol 66 n° 3 (September - November 2022) . - pp 412 - 431[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 139-2022031 RAB Revue Centre de documentation En réserve L003 Disponible Localisation par l'image en milieu urbain : application à la réalité augmentée / Antoine Fond (2018)
Titre : Localisation par l'image en milieu urbain : application à la réalité augmentée Type de document : Thèse/HDR Auteurs : Antoine Fond, Auteur ; Marie-Odile Berger, Directeur de thèse Editeur : Nancy, Metz : Université de Lorraine Année de publication : 2018 Importance : 138 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour l'obtention du doctorat de l'Université de Lorraine, Ecole doctorale IAEM Lorraine, mention Informatique, 2018Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] appariement de formes
[Termes IGN] apprentissage profond
[Termes IGN] bati
[Termes IGN] détection du bâti
[Termes IGN] distance de Manhattan
[Termes IGN] estimation de pose
[Termes IGN] façade
[Termes IGN] orthorectification
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] point de fuite
[Termes IGN] réalité augmentée
[Termes IGN] recalage d'image
[Termes IGN] recalage de surfaces
[Termes IGN] réseau neuronal convolutif
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] vision par ordinateur
[Termes IGN] zone urbaineIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Dans cette thèse, on aborde le problème de la localisation en milieux urbains. Inférer un positionnement précis en ville est important dans nombre d’applications comme la réalité augmentée ou la robotique mobile. Or les systèmes basés sur des capteurs inertiels (IMU) sont sujets à des dérives importantes et les données GPS peuvent souffrir d’un effet de vallée qui limite leur précision. Une solution naturelle est de s’appuyer le calcul de pose de caméra en vision par ordinateur. On remarque que les bâtiments sont les repères visuels principaux de l’humain, mais aussi des objets d’intérêt pour les applications de réalité augmentée. On cherche donc à partir d’une seule image à calculer la pose de la caméra par rapport à une base de données de bâtiments références connus. On décompose le problème en deux parties : trouver les références visibles dans l’image courante (reconnaissance de lieux) et calculer la pose de la caméra par rapport à eux. Les approches classiques de ces deux sous-problèmes sont mises en difficultés dans les environnements urbains à cause des forts effets perspectives, des répétitions fréquentes et de la similarité visuelle entre façades. Si des approches spécifiques à ces environnements ont été développés qui exploitent la grande régularité structurelle de tels milieux, elles souffrent encore d’un certain nombre de limitations autant pour la détection et la reconnaissance de façades que pour le calcul de pose par recalage de modèle. La méthode originale développée dans cette thèse s’inscrit dans ces approches spécifiques et vise à dépasser ces limitations en terme d’efficacité et de robustesse aux occultations, aux changements de points de vue et d’illumination. Pour cela, l’idée principale est de profiter des progrès récents de l’apprentissage profond par réseaux de neurones convolutionnels pour extraire de l’information de haut-niveau sur laquelle on peut baser des modèles géométriques. Notre approche est donc mixte Bottom-Up/Top-Down et se décompose en trois étapes clés. Nous proposons tout d’abord une méthode d’estimation de la rotation de la pose de caméra. Les 3 points de fuite principaux des images en milieux urbains, dits points de fuite de Manhattan sont détectés grâce à un réseau de neurones convolutionnels (CNN) qui fait à la fois une estimation de ces points de fuite, mais aussi une segmentation de l’image relativement à eux. Une second étape de raffinement utilise ces informations et les segments de l’image dans une formulation bayésienne pour estimer efficacement et plus précisément ces points. L’estimation de la rotation de la caméra permet de rectifier les images et ainsi s’affranchir des effets de perspectives pour la recherche de la translation. Dans une seconde contribution, nous visons ainsi à détecter les façades dans ces images rectifiées et à les reconnaître parmi une base de bâtiments connus afin d’estimer une translation grossière. Dans un souci d’efficacité, on a proposé une série d’indices basés sur des caractéristiques spécifiques aux façades (répétitions, symétrie, sémantique) qui permettent de sélectionner rapidement des candidats façades potentiels. Ensuite, ceux-ci sont classifiés en façade ou non selon un nouveau descripteur CNN contextuel. Enfin la mise en correspondance des façades détectées avec les références est opérée par un recherche au plus proche voisin relativement à une métrique apprise sur ces descripteurs [...] Note de contenu : Introduction
1 - Etat de l'art
2 - Estimation des points de fuite de Manhattan
3 - Proposition de façades pour la détection et la reconnaissance de bâtiments
4 - Segmentation et recalage de façade conjoint
ConclusionNuméro de notice : 21592 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de doctorat : Informatique : Université de Lorraine : 2018 Organisme de stage : IFSTTAR nature-HAL : Thèse DOI : sans En ligne : http://www.theses.fr/2018LORR0028 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90630